首页> 外文会议>European workshop on modern developments and applications in microbean analysis >CHARACTERISATION OF Li-ION BATTERIES BY COMBINED LM, CT, EDS, WDS AND SIMS USING HELIUM-ION MICROSCOPY (CARL ZEISS ORION)
【24h】

CHARACTERISATION OF Li-ION BATTERIES BY COMBINED LM, CT, EDS, WDS AND SIMS USING HELIUM-ION MICROSCOPY (CARL ZEISS ORION)

机译:使用氦离子显微镜(Carl Zeiss Orion)通过组合LM,CT,EDS,WDS和SIMS进行锂离子电池的表征(Carl Zeiss Orion)

获取原文

摘要

Today's battery technology is the bottleneck for advancements in a variety of applications ranging from consumer electronics to electronic vehicles. For Li-ion batteries the lifetime and safety are crucial concerns for their application. Depending on the cell chemistry, design and operation conditions several degradation processes can occur, which affect their performance and durability. The characterisation of structural and chemical properties of batteries from the macro- to the nanoscale with combined light microscopy (LM), computer tomography (CT), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) enable new insights for battery fabrication and enlightens battery aging mechanisms. The main studies on degradation effects were performed on commercial graphite/NMC (Li [Co_(1/3)Ni_(1/3)Mn_(1/3)] O_2) pouch cells treated in different scenarios and conditions. Increasing thickness of the whole cells due to storage and cycling processes are correlated to Li plating and the growth of the secondary electron image (SEI) layer can be detected. Morphology changes, formation of particle coatings on the cathode side (passivation of the active surface), a reaction rim on the anode side and the reduction of porosity of the separator are visualised [1]. The chemical analyses were performed by SEM with energy- (WDS) and wavelength-dispersive (WDS) X-ray spectrometry and additionally with the ORION NanoFab, a 3-in-l multibeam ion microscope for sub-10 nm nanostructuring, with an attached SIMS. This enables increasing resolution of the analytic studies and the spatial detection of Li. Figure 1 presents the investigation of the separator foils anode side. Figure 1a shows a top view image recorded with the SIGMA 300 VP SEM. Different precipitations formed by degeneration are marked as 1, 1b, 2 and 3. The EDS was performed with 5 kV accelerating voltage to improve the spatial resolution and decrease information depth. By phase mapping (Fig. lb) differences in the chemical composition are obtained, where the round precipitations (green and yellow) yield an enrichment in the Si and F content (Fig. 1c). The differences between 1 and lb are due to matrix effects, since the lateral information depth of the X-rays in the centre of particle 1b is beyond the particle size. The elongated precipitations (blue) show an enrichment in Cu and P and the original separator foil appears as the red phase (Fig. 1c). The ORION NanoFab equipped with a SIMS enables mapping of the lithium content with a high spatial resolution. All the newly created features on top of the separator foil showed an enrichment in the lithium content (Figs. 1d and 1e).
机译:今天的电池技术是从消费电子到电子车辆的各种应用中推进的瓶颈。对于锂离子电池,寿命和安全对其应用至关重要。根据细胞化学,可能发生设计和操作条件,可能发生几种降解过程,这会影响其性能和耐用性。用组合光学显微镜(LM),计算机断层扫描(CT),扫描电子显微镜(SEM)和二次离子质谱(SIMS),将电池的结构和化学性能与纳米级的结构和化学性质的表征表征为电池制造的新见解并启发电池老化机制。在不同情景和条件下处理的商业石墨/ NMC(LI [CO_(1/3)Ni_(1/3)MN_(1/3)] O_2)进行了关于降解效应的主要研究。由于储存和循环过程而增加的整个细胞的厚度与Li电镀相关,并且可以检测二次电子图像(SEI)层的生长。形态变化,在阴极侧的颗粒涂层(活性表面钝化)的形成,可视化阳极侧的反应边缘和分离器的孔隙率的降低[1]。通过SEM进行化学分析,具有能量 - (WDS)和波长分散(WDS)X射线光谱法,并且另外与ORION NONOFAB,用于SUB-10NM纳米结构的3 in-L多区域离子显微镜,附接模拟人生。这使得能够增加分析研究的分辨率和Li的空间检测。图1显示了分离器箔阳极侧的研究。图1A示出了用Sigma 300 VP SEM记录的顶视图图像。退化形成的不同沉淀标记为1,1B,2和3. EDS用5kV加速电压进行,以改善空间分辨率并降低信息深度。通过相位映射(图1b)得到化学组成的差异,其中圆形沉淀(绿色和黄色)在Si和F含量中产生富集(图1C)。 1和LB之间的差异是由于矩阵效应,因为颗粒1B中心中的X射线的横向信息深度超出了粒径。细长的沉淀(蓝色)显示Cu和P中的富集,并且原始分离器箔看起来作为红色相(图1C)。配备SIMS的ORION NANOFAB能够以高空间分辨率映射锂含量。分离器箔顶上的所有新创建的特征显示在锂含量中的富集(图1D和1E)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号