【24h】

Variable Ordering for Decision Diagrams: A Portfolio Approacho

机译:决策图的可变排序:投资组合方法

获取原文

摘要

Relaxed decision diagrams have recently been successfully applied within a range of solution methodologies for discrete optimization, including constraint programming, integer linear programming, integer nonlinear programming, and combinatorial optimization. The variable ordering is often of crucial importance for their effectiveness. For example, Bergman et al. [1, 2] demonstrate that a variable ordering that yields a small exact diagram typically also provides stronger dual bounds from the relaxed diagram. When decision diagrams are built from a single top-to-bottom compilation, dynamic variable orderings can be very effective. For example, a recent work by Cappart et al. [3J deploys deep reinforcement learning to dynamically select the next variable during compilation. Dynamic variable orderings are less applicable, however, to compilation via iterative refinement, in which case the ordering must be specified in advance. In this work, we consider variable ordering strategies for the latter case. Oftentimes there is no single variable ordering strategy that dominates all others for a given set of problem instances. Selecting the best ordering, or more generally the best algorithm, from a set of alternatives is a well-studied problem in artificial intelligence, in the context of algorithm portfolios. There are several ways to construct an algorithm portfolio: using static or dynamic features, formulating predictive models at the algorithm or portfolio level, predicting one algorithm to run per instance or creating a schedule of algorithms to run, using a fixed portfolio or updating it online [4]. We consider several different portfolio mechanisms: an offline predictive model of the single best algorithm using classifiers, an online low-knowledge algorithm selection, a static uniform time-sharing portfolio, and a dynamic online time allocator. As a case study, we consider the graph coloring problem, for which a decision diagram approach was recently introduced [5, 6]. It uses an iterative refinement procedure much like Benders decomposition or lazy-clause generation, by repeatedly refining conflicts in the diagram until the solution is conflict free. Our experimental results show that predictive methods using classification models or exploration phases can lead to more instances solved optimally. However, these methods may lead to delayed optimality results on problem instances that are easy to solve. Another insight is that a mixed portfolio can outperform a clairvoyant selection of the best individual ordering for each instance, by yielding a solution with a unique best upper bound from one ordering and a unique best lower bound from a different ordering.
机译:最近已经成功地应用于离散优化的一系列解决方案方法中的放宽决策图,包括约束编程,整数线性编程,整数非线性编程和组合优化。可变排序往往对其有效性至关重要。例如,Bergman等人。 [1,2]证明产生小精确图的可变排序通常还提供来自松弛图的更强的双界。当从单个顶到底部编译构建决策图时,动态变量排序可能非常有效。例如,Cappart等人最近的工作。 [3J部署深度加强学习,以在编译期间动态选择下一个变量。然而,动态变量排序不太适用于通过迭代细化编译,在这种情况下,必须提前指定排序。在这项工作中,我们考虑后者的可变订购策略。通常没有单一可变排序策略,以给定的一组问题实例占据所有其他人。在算法投资组合的背景下,从一组替代方案中选择最佳订购或更常见的算法是从一组替代方案中研究了人工智能的问题。有几种方法可以构建算法组合:使用静态或动态特征,在算法或产品组合级别中配制预测模型,预测每隔一个算法运行或创建要运行的算法的计划,请使用固定的产品组合或在线更新它[4]。我们考虑了几种不同的组合机制:使用分类器的单一最佳算法的离线预测模型,在线低知识算法选择,静态均匀时间共享组合和动态在线时间分配器。作为一个案例研究,我们考虑了图形着色问题,最近引入了决策图方法[5,6]。它使用迭代细化程序很多,如弯曲者分解或懒人生成,通过反复炼制图中的冲突,直到解决方案是免费的。我们的实验结果表明,使用分类模型或勘探阶段的预测方法可能导致更多的实例最佳地解决。然而,这些方法可能导致延迟的最优性导致易于解决的问题实例。另一个识别是,混合组合可以优于透视尺寸的透明度选择每个实例的最佳单个排序,通过从一个订单和不同排序的独特最佳下限的具有独特的最佳下限的解决方案以及来自不同的排序的独特最佳下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号