首页> 外文会议>Conference on nanomechanical testing in materials research and development >EXPLORING SIZE EFFECTS IN COPPER-CHROMIUM-ZIRCONIUM USING INDENTATION TECHNIQUES AND IN-SITU MICRO-PILLAR COMPRESSION
【24h】

EXPLORING SIZE EFFECTS IN COPPER-CHROMIUM-ZIRCONIUM USING INDENTATION TECHNIQUES AND IN-SITU MICRO-PILLAR COMPRESSION

机译:利用压痕技术和原位微柱压缩技术探索铜铬锆的尺寸效应

获取原文

摘要

The influence of microstructure on the mechanical properties of materials has been the focus of research over several decades, with various attempts made to characterize this size effect numerically, e.g. the Hall-Petch relationship. This behaviour is overlaid with an extrinsic size dependence that scales with the testing technique used, whereby the smaller the sampled volume the stronger the material appears to behave. Considering the growing trend towards miniaturised mechanical testing, particularly in the electronics industry and nuclear community, both forms of the size effect need to be fully understood in order to achieve engineering-relevant results. In particular, knowing how the two contribute cumulatively in different material systems is non-trivial and requires further investigation. In this work several materials with different strengthening mechanisms are tested at a range of length-scales in order to explore the combined effect on elastic and plastic deformation. A variation in the dominant microstructural length-scale was achieved via solid solution strengthening, precipitation hardening, grain size reduction and the addition of proton-induced irradiation defects in CuCrZr, which was chosen due to its role in heat sink components of current and future experimental fusion reactors. The small-scale test techniques used were Berkovich indentation, spherical indentation and in-situ pillar compression, which spanned test lengths from 10's nm to 100's μm. It was found that there is no one mechanism that can be used to describe the material response at all stages of deformation, therefore any scaling model hoping to predict bulk-scale response from small-scale testing must take into account multiple factors, including dislocation source availability, size and motion. The sensitivity to microstructure was also found to vary with different test methods, for example in pillar compression experiments (Fig. 1) where after irradiation there was no apparent extrinsic size effect due to the dominating irradiation defects.
机译:几十年来,微观结构对材料的机械性能的影响一直是研究的重点,并进行了各种尝试以数值方式表征这种尺寸效应,例如,尺寸。 Hall-Petch关系。这种行为被外部尺寸依赖性所覆盖,外部尺寸依赖性随所使用的测试技术而变化,由此,采样体积越小,材料表现出的强度就越强。考虑到小型化机械测试的增长趋势,特别是在电子工业和核能界,为实现与工程相关的结果,需要充分理解两种形式的尺寸效应。特别是,了解两者如何在不同的材料系统中累积地贡献并非易事,需要进一步研究。在这项工作中,在各种长度尺度上测试了几种具有不同强化机制的材料,以探索对弹性和塑性变形的综合影响。通过固溶强化,沉淀硬化,晶粒尺寸减小以及在CuCrZr中添加质子诱导的辐照缺陷,实现了主要微观结构长度尺度的变化,这是由于其在当前和将来的实验中的散热器组件中的作用而选择的。聚变反应堆。所使用的小规模测试技术是Berkovich压痕,球形压痕和原位柱压缩,其测试长度范围从10纳米到100微米。发现没有一种机制可以用来描述变形所有阶段的材料响应,因此,任何希望通过小规模测试预测体积响应的缩放模型都必须考虑多种因素,包括位错源可用性,大小和动作。还发现对微观结构的敏感性会随不同的测试方法而变化,例如在柱压缩实验(图1)中,在辐照后,由于主要的辐照缺陷,没有明显的外在尺寸效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号