首页> 外文会议>Conference on nanomechanical testing in materials research and development >COMPRESSION OF GOLD SUB-MICRON CRYSTALLITES: METHOD AND EXPERIMENTS
【24h】

COMPRESSION OF GOLD SUB-MICRON CRYSTALLITES: METHOD AND EXPERIMENTS

机译:亚亚金微晶金的压缩:方法和实验

获取原文

摘要

Understanding and characterizing the mechanical response of individual nanostructure is of great importance for both fundamental prospects and device reliability. Higher flow stress with decreasing sample size is observed together with jerky flow. Compression of pristine submicron gold crystallites yield at very large stress in a stochastic manner, followed by large displacement bursts reaching up to 50% of the initial height [1,2]. In this work, by collecting a large set of measurements, we investigate the small and large strain behavior of crystallites loaded in compression. Large arrays of [111] oriented gold crystallites are prepared by solid state dewetting of initial cylinders of different volumes on sapphire substrates. Dedicated flat punch compression insitu a FEG-SEM (figure 1a) has been carried out in load controlled mode [3]. Microstructure of defects is investigated using synchrotron radiation by nanoscale 3D imaging (Bragg Coherent X-ray Diffraction Imaging) [4] and Atomic Force Microscopy observations. The analysis of the plastic instability and its amount of deformation is carried out taking into account the inertial effect of the instrument, using a 1D dynamic model and Finite Element Method calculations. Simulations are made with different estimates of the shape of each individual crystallite, from an ideal cylinder of equivalent volume to the one based on SEM or AFM observations. We show that prior to the displacement burst, plastic events take place and that the sudden displacement does not necessarily relates to the onset of dislocation nucleation (figure 1b). Moreover, using the collection of measurements, we show that a unique stress-strain response can be obtained which can be used as a lower bound estimate of the mechanical response in compression of the crystallites.
机译:理解和表征单个纳米结构的机械响应对于基本前景和设备可靠性都非常重要。随着样品量的减少,观察到较高的流动应力以及急流。原始亚微米金微晶的压缩以非常大的应力随机产生,随后大位移爆发达到初始高度的50%[1,2]。在这项工作中,通过收集大量的测量值,我们研究了压缩加载的微晶的大小应变行为。通过对蓝宝石衬底上不同体积的初始圆柱进行固态去湿,可以制备大阵列的[111]取向金微晶。在负载控制模式下已进行了专用的扁平冲头原位压缩FEG-SEM(图1a)[3]。使用同步加速器辐射通过纳米级3D成像(Bragg相干X射线衍射成像)[4]和原子力显微镜观察研究了缺陷的微观结构。考虑到仪器的惯性效应,使用一维动力学模型和有限元方法计算来进行塑性不稳定性及其变形量的分析。从对等体积的理想圆柱体到基于SEM或AFM观测的理想圆柱体,对每个微晶的形状进行了不同的估计,从而进行了模拟。我们表明,在位移破裂之前,发生了塑性事件,突然位移并不一定与位错成核的发生有关(图1b)。此外,使用测量值的集合,我们显示可以获得唯一的应力应变响应,该应力应变响应可用作微晶压缩过程中机械响应的下限估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号