首页> 外文会议>Annual AHS international forum and technology display >Temperature Rise and Tooth Surface Evolution of Gearbox under Loss of Lubrication: Experimental and Numerical Investigation
【24h】

Temperature Rise and Tooth Surface Evolution of Gearbox under Loss of Lubrication: Experimental and Numerical Investigation

机译:润滑损失下齿轮箱的温升与齿面演变:实验与数值研究

获取原文
获取外文期刊封面目录资料

摘要

Loss of the primary lubrication in a helicopter gearbox can result in a very rapid or immediate failure of the transmission system due to drastic reduction in heat removal and the degrading tribological performance of the highly loaded gear contacts. Current methods for predicting the gearbox life and performance under loss-of-lubrication condition are largely experimental and experience-based and thus provide limited insights into the underlying physics of the evolving tribology of gears and bearings. One of the major technical barriers that currently constrain the physics-based predictive capability is the limited understanding and quantitative modeling of the thermomechanical response of tooth surface after the loss of lubrication. The experimental portion of the effort described in this paper is a systematic study of the temperature rise and tooth surface evolution for a generic gearbox under loss-of-lubrication conditions. The overall thermal conditions of the gearbox are monitored through an infrared thermal imaging camera and the transient temperatures at multiple locations of gear and pinions are continuously measured with thermocouples. Tooth samples from different stages towards the final thermal runaway were examined to reveal the underlying physics of the surface evolution and failure after the loss of lubrication. In the modeling effort, FE modeling was combined with the transient thermal mixed-EHL model of gear meshing to simulate the gear thermal response and a sensitivity study was conducted with the validated thermal model to evaluate the potential underlying physics of the thermal runaway. The combined heat generation from frictional sliding and plastic deformation was also determined through the FE simulation of mesoscale sliding contact of tooth surface. The experimental and numerical results suggest that the potential mechanism of the final catastrophic failure is the adiabatic shear instability associated with severe plastic deformation and phase transformation.
机译:直升机变速箱中主要润滑的损失可能会导致传动系统非常迅速或立即发生故障,这是由于排热量的急剧减少以及高负荷齿轮触点的摩擦学性能下降所致。当前在润滑损失条件下预测齿轮箱寿命和性能的方法主要是实验性的和基于经验的,因此对于齿轮和轴承的摩擦学发展的基础物理学的了解有限。当前限制基于物理学的预测能力的主要技术障碍之一是对失去润滑后牙齿表面的热机械响应的有限理解和定量建模。本文所述工作的实验部分是对普通齿轮箱在失去润滑条件下的温度升高和齿面演变的系统研究。变速箱的整体热状况通过红外热像仪进行监控,并使用热电偶连续测量齿轮和小齿轮在多个位置的瞬态温度。检查了从不同阶段到最终热失控的牙齿样品,以揭示失去润滑后表面演变和破坏的基本物理原理。在建模工作中,有限元建模与齿轮啮合的瞬态热混合EHL模型相结合,以模拟齿轮热响应,并使用已验证的热模型进行了敏感性研究,以评估潜在的热失控物理现象。摩擦滑动和塑性变形共同产生的热量也通过有限度的齿面中尺度滑动接触的有限元模拟确定。实验和数值结果表明,最终灾难性破坏的潜在机理是绝热剪切不稳定性与严重的塑性变形和相变有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号