【24h】

Surface Corona Aging of Epoxy/SiO2 Nanocomposites

机译:环氧树生/ SiO 2 纳米复合材料表面电晕老化

获取原文
获取外文期刊封面目录资料

摘要

Epoxy resin has been widely used in electronic and electrical equipment due to its excellent electrical and mechanical properties. However, prolonged corona discharge may cause deterioration of the surface, and finally lead to failure of insulation structure. Extensive researches have indicated that addition of nano fillers can improve corona resistance of polymers. In this paper, epoxy/SiO2 nanocomposites are prepared to study the micro development of corona erosion and surface trapping performance during corona aging. AC breakdown strength of epoxy/SiO2 nanocomposites is measured firstly and 2 wt% epoxy/SiO2 nanocomposite with highest AC breakdown strength of 64.11 kV/mm is selected to conduct corona resistance test with pure epoxy. It was observed by polarizing microscope that the degradation was severer for pure epoxy resin with corrosion area from about 0.27 mm2 at 10 min to 0.57 mm2 at 30 min, while the area of 2 wt% nano-SiO2 nanocomposite is nearly invariable about 0.21 mm2. With the increase of corona duration, the corrosion regions become darker which indicates thicker channel and more intensive corrosion density. Additionally, the corona damage extends from the center to edge of samples in shape of “branch”, and “branch” channels of degradation develop denser in the center. The isothermal surface potential decay (ISPD) results show that shallow trap ranges from 0.90 to 1.00 eV, whereas the deep trap locates at 1.05~1.15 eV. The deep energy density of pure epoxy decreases dramatically from 7.2x1014 m-3 to 4.9x1014 m-3 with corona aging time, while that of 2 wt% epoxy/SiO2 nanocomposite maintains constant about 6.9x1014 m-3. Both of the shallow trap density of epoxy and nanocomposite increases after corona aging, while pure epoxy increases more obvious from 1.6x1013 m-3 to 3.8x1013 m-3. Therefore, charges are more difficult to inject and move in epoxy nanocomposites because of more deep traps even after corona exposure, which illustrates why nanocomposites have higher corona resistance.
机译:由于其优异的电气和机械性能,环氧树脂已广泛用于电子和电气设备。然而,长期的电晕放电可能导致表面的劣化,并且最终导致绝缘结构的失效。广泛的研究表明,添加纳米填料可以改善聚合物的电晕电阻。在本文中,环氧/ SIO 2 准备纳米复合材料研究电晕老化期间电晕侵蚀和表面捕获性能的微观开发。环氧/ SIO的AC分解强度 2 首先测量纳米复合材料,并为2wt%环氧/ siO 2 选择具有64.11kV / mm的最高AC击穿强度的纳米复合材料以通过纯环氧树脂进行电晕电阻试验。通过偏振显微镜观察,使得纯环氧树脂的腐蚀面积为约0.27mm的耐腐蚀面积 2 10分钟至0.57毫米 2 在30分钟,而面积为2重量%的纳米SiO 2 纳米复合材料几乎不变约0.21毫米 2 。随着电晕持续时间的增加,腐蚀区域变得更暗,表示较厚的通道和更密集的腐蚀密度。另外,电晕损坏从中心到“分支”形状的样本的边缘延伸,和“分支”通道在中心的劣化发育密集。等温表面电位衰减(ISPD)结果表明,浅陷阱范围为0.90至1.00eV,而深阱位于1.05〜1.15eV。纯环氧树脂的深度能量密度从7.2x10急剧下降 14 m -3 到4.9x10. 14 m -3 用电晕老化时间,而2重量%的环氧/ SIO 2 纳米复合材料保持恒定约6.9×10 14 m -3 。电晕老化后环氧和纳米复合材料的浅陷阱密度都增加,而纯环氧树脂从1.6×10增加更明显 13 m -3 到3.8x10. 13 m -3 。因此,由于电晕暴露后,甚至在电晕曝光之后,由于更深的陷阱,因此甚至更深的陷阱更难以进入并移动,这表示为什么纳米复合材料具有更高的电晕电阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号