首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >Coherent-vorticity Preserving Large-Eddy Simulation of trefoil knotted vortices
【24h】

Coherent-vorticity Preserving Large-Eddy Simulation of trefoil knotted vortices

机译:三叶形打结涡的相干涡保大涡模拟

获取原文

摘要

We have performed Coherent-vorticity Preserving (CvP) Large-Eddy simulations of a trefoil knot-shaped vortex, inspired by the experiments of Kleckner and Irvine.5 The flow parameter space is extended in the present study, including variations of the circulation Reynolds numbers in the range Rtr = 2x 10~3 -200x 10~3, where Rtr = 20,000 is the value used in the experiments. The vortex line corresponding to the trefoil knot is defined using a parametric equation and the Biot-Savart law is employed to initialize the velocity field. The CvP-LES computation displays a good qualitative match with the experiment. In particular, the vortex entanglement process is accurately represented as well as the subsequent separation of the main vortex in two distinct structures - a small and a large vortex - with different self-advection speeds that have been quantified. The smaller vortex propagates at approximately 3 times the speed of the larger vortex, despite exhibiting a one-order-of-magnitude lower vorticity magnitude peak in its core. The advection velocity of the vortex before bursting is found to be independent of the Reynolds number. The low Reynolds number computation leads to a decrease of the separated vortices velocity after bursting, compared to the higher Reynolds computations. The computation of energy spectra emphasizes intense energy transfers from large to small scales during the bursting process. The evolution of volume-averaged enstrophy shows that the bursting leads to the creation of small scales that arc sustained a long time in the flow, when a sufficiently large Reynolds number is considered (Rer > 20000). The low Reynolds number case Rtr = 2,000 hinders the generation of small scales during the bursting process and yields essentially laminar dynamics. The onset of background turbulence due to the entanglement process can be observed at Rtr = 200.000.
机译:在Kleckner和Irvine的实验的启发下,我们对三叶结形涡旋进行了相干涡旋保藏(CvP)大涡模拟。5本研究扩展了流动参数空间,包括循环雷诺数的变化。 Rtr = 2x 10〜3 -200x 10〜3,其中Rtr = 20,000是实验中使用的值。使用参数方程式定义与三叶形结相对应的涡旋线,并采用Biot-Savart定律初始化速度场。 CvP-LES计算与实验显示出良好的定性匹配。特别地,涡旋纠缠过程以及随后的主要涡旋在两个不同的结构中(小和大涡旋)被精确地表示出来,并具有不同的对流速度,这些自对流速度已被量化。尽管较小的涡流在其核心处表现出一个数量级的较低涡度幅度峰值,但其传播速度约为较大涡旋的速度的3倍。发现爆发前涡旋的平流速度与雷诺数无关。与较高的雷诺数计算相比,低雷诺数计算会导致爆裂后分离的涡流速度降低。能谱的计算强调了在破裂过程中从大尺度到小尺度的剧烈能量转移。体积平均涡旋的演变表明,当考虑到足够大的雷诺数时(Rer> 20000),爆发导致小尺度的形成,该小尺度的电弧在流动中持续了很长时间。雷诺数低的情况下Rtr = 2,000会阻止在爆发过程中生成小尺度,并产生基本的层流动力学。可以在Rtr = 200.000处观察到由于纠缠过程而产生的背景湍流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号