首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >Computational Investigation of Nominally-Orthogonal Pneumatic Active Flow Control for High-Lift Systems
【24h】

Computational Investigation of Nominally-Orthogonal Pneumatic Active Flow Control for High-Lift Systems

机译:高举升系统名义正交气动主动流量控制的计算研究

获取原文

摘要

We explore the feasibility of using nominally-orthogonal jets as active aerodynamic load control for multi-element high-lift systems, and whether the nominally-orthogonal jets can offer a variety of performance improvements. These nominally-orthogonal jets inject momentum normal to the airfoil surface near the flap trailing edge, where they create a vortex that entrains flow from the opposing side and change the airfoil circulation. Lift-enhancement opportunities of trailing edge nominally-orthogonal jets have previously been studied by Malavard et al. and Blaylock et al.2'3 on single-element airfoils; however, their effect on drag was not thoroughly investigated. In this study, we investigate two-dimensional nominally-orthogonal jet effects on both lift and drag on a two-element airfoil, NLR7301. We utilize Chimera Grid Tools to generate structured curvilinear overset grids, and the Reynolds-averaged Navier-Stokes solver OVERFLOW-2 to solve for the flow field around the airfoil. We perform various computational sensitivity studies on the baseline airfoil without a jet to validate computational results against benchmark experimental data. Using a Chimera overset grid topology, we demonstrate a similar lift-enhancement effect between a nominally-orthogonal jet and a nominally-orthogonal physical tab employed at the same location on the studied airfoil. After we introduce the nominally-orthogonal jet concept, we investigate nominally-orthogonal jets with various momentum coefficient settings, C_μ = 0.00 — 0.04 and present a lift-enhancement relationship △C_l ≃ 3.59√(C_μ) for this airfoil. We discuss that utilizing a nominally-orthogonal jet with C_μ, = 0.01 can shift the linear region of the lift curve by a △C_l = 0.36 for the pressure side jet and by a △C_l = —0.27 for the suction side jet. Employing a nominally-orthogonal jet is also shown effective in altering the drag. To study the impact, we carry out a drag decomposition study in the form of drag polars. We show for a given C_l = 2.50, a nominally-orthogonal jet with C_μ = 0.01 on the pressure and suction side of the airfoil results in 113 drag count decrements and 41 drag count increments, respectively, compared to the baseline airfoil with no jet. These results show that large and controllable changes in aerodynamic performance can be achieved by relatively small active flow control inputs using the nominally-orthogonal jets presented in this study.
机译:我们探索了使用名义正交射流作为多元件高升力系统主动空气动力负载控制的可行性,以及名义正交射流是否可以提供多种性能改进。这些名义上正交的射流在襟翼后缘附近垂直于机翼表面注入动量,在此处它们形成涡流,从相对侧夹带气流并改变机翼循环。 Malavard等人先前已经研究了后缘名义正交射流的升力增强机会。和Blaylock等人的2'3关于单元素机翼的研究;但是,它们对阻力的影响尚未得到彻底研究。在这项研究中,我们研究了二维名义正交射流对两元素机翼NLR7301的升力和阻力的影响。我们利用Chimera网格工具生成结构化的曲线重叠网格,并利用雷诺平均的Navier-Stokes求解器OVERFLOW-2来求解翼型周围的流场。我们在没有喷气机的情况下对基准翼型进行了各种计算敏感性研究,以根据基准实验数据验证计算结果。使用奇美拉过冲网格拓扑,我们证明了在研究机翼的相同位置采用的名义正交射流和名义正交物理接头之间的提升效果相似。在介绍了名义正交射流概念之后,我们研究了具有各种动量系数设置C_μ= 0.00 — 0.04的名义正交射流,并给出了该翼型的升力增强关系△C_l≃3.59√(C_μ)。我们讨论了使用C_μ= 0.01的名义正交射流可以使升力曲线的线性区域对于压力侧射流偏移△C_l = 0.36,对于吸力侧射流偏移△C_l = -0.27。还显示出使用名义正交射流可以有效地改变阻力。为了研究这种影响,我们以阻力极的形式进行了阻力分解研究。我们显示,对于给定的C_1 = 2.50,与不带喷嘴的基准翼型相比,翼型压力和吸力侧的C_μ= 0.01的名义正交射流分别导致113阻力数减少和41阻力数增加。这些结果表明,使用本研究中提出的标称正交射流,可以通过相对较小的主动流量控制输入来实现大而可控的空气动力学性能变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号