首页> 外文会议>Asian conference on remote sensing;ACRS >CLASSIFICATION OF DIFFERENT VARIETIES OF SNOW BASED ON SPECTRAL REFLECTANCE USING ASD SPECTRORADIOMETER FROM THE HIMALAYAS
【24h】

CLASSIFICATION OF DIFFERENT VARIETIES OF SNOW BASED ON SPECTRAL REFLECTANCE USING ASD SPECTRORADIOMETER FROM THE HIMALAYAS

机译:基于来自喜马拉雅山脉的ASD分光光度计基于光谱反射率的雪的不同品种分类

获取原文

摘要

The monitoring of snow cover in the Indian Himalaya is important for climate research and for operational activities i.e. hydrology and weather forecasting. For this reliable and accessible snow data are required with spatial variability and long-term trends. Hyperspectral imagery requires ground truth data for better image interpretation and analysis. Spectroscopy is used to quantify snow optical properties, based on reflectance measurements in the visible (VIS), near-infrared (MR) and short wave infrared (SWTR) regions for the classification of different varieties of snow. Conventional crystal gauge with a magnifying glass was used in the field for observing snow properties. The spectral signature at Dhundi - Solang (snowbound) and Patio (glaciated), Himachal Pradesh, India during the successive years of 2017 and 2018. A total of 663 spectral signatures from different locations of the study areas were collected by measuring and analyzing their reflectance curves using Analytical Spectral Device (ASD) FieldSpec 4 in the range of 350-2500 nm. These spectra provide an integrative technique that measures the fundamental characteristics and composition of the snow and grain size. Clean, fine-grained snow is scattering-dominated and reflects the majority (97-99%) of incident sunlight in ultra-violate to visible wavelengths (350-750 nm), and is more absorbing in NIR/SWIR (750-2500 nm). As the snow ages its grain size increases and the reflectance decreases 350 -2500 nm. however, maximum changes are recorded in the visible & NIR region. Reflectance differs for snow and ice depending on the actual composition of the material including impurities and grain size. For glacier bound snow area the debris being dominant contaminant plays an important role in the reflectance of different wavelength regions. A drastic change in reflectance for fresh and moderately dirty snow is noted in the visible portion. In general, snow has higher spectral contrast in visible and SWIR region, however, reflection in SWIR related to its microscopic liquid water content. Variation in reflectance for moderate to highly dirty snow is attributed to vehicular emission and construction upstream. Thus, the study proved its importance in improving the accuracy of snow and ice parameter retrieval from field-based spectroradiometer in turn useful climatic studies.
机译:对印度喜马拉雅山的积雪进行监测对于气候研究和业务活动(如水文学和天气预报)非常重要。为此,需要具有空间可变性和长期趋势的可靠且可访问的降雪数据。高光谱图像需要地面真实数据才能更好地进行图像解释和分析。基于可见光(VIS),近红外(MR)和短波红外(SWTR)区域的反射率测量,光谱法用于量化雪的光学特性,以对不同种类的雪进行分类。在该领域中,常规的带放大镜的晶体计用于观察雪的性质。 2017年和2018年连续几年,印度喜马al尔邦Dhundi-Solang(下雪天)和Patio(冰川化)的光谱特征。通过测量和分析反射率,从研究区域的不同位置收集了663个光谱特征使用分析光谱设备(ASD)FieldSpec 4在350-2500 nm范围内绘制曲线。这些光谱提供了一种综合技术,可测量雪的基本特征和组成以及粒度。干净,细粒的雪是散射为主的,并以紫外到可见波长(350-750 nm)反射大部分(97-99%)的入射阳光,并且在NIR / SWIR(750-2500 nm)中更易吸收)。随着降雪年龄的增长,其晶粒尺寸增加,反射率降低350 -2500 nm。但是,最大变化记录在可见光和NIR区域。对于雪和冰,反射率会有所不同,具体取决于材料的实际组成(包括杂质和晶粒大小)。对于冰川限制的雪域,作为主要污染物的碎片在不同波长区域的反射率中起着重要作用。在可见部分,可以看到新鲜雪和中度肮脏雪的反射率发生了急剧变化。通常,雪在可见光和SWIR区域具有较高的光谱对比度,但是,SWIR中的反射与其微观液态水含量有关。中度至高度脏雪的反射率变化归因于车辆的排放和上游构造。因此,该研究证明了其对于提高基于野外分光辐射计的冰雪参数反演精度的重要性,进而有助于进行气候研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号