首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >METHODOLOGY FOR CALCULATING FLOATING OFFSHORE WIND FOUNDATION INTERNAL LOADS USING BLADED AND A FINITE ELEMENT ANALYSIS SOFTWARE
【24h】

METHODOLOGY FOR CALCULATING FLOATING OFFSHORE WIND FOUNDATION INTERNAL LOADS USING BLADED AND A FINITE ELEMENT ANALYSIS SOFTWARE

机译:叶片和有限元分析软件计算海上浮空基础内荷载的方法。

获取原文

摘要

In the recent years, the floating offshore wind industry has developed quickly and most authors are now converging towards the need of a coupled loads analysis using aero-hydro-servo-elastic software on time domain simulations for floating foundations design. Different hydrodynamic theories still exist and their application depends on the floating platform characteristics. The Morison equation and the boundary element method (BEM, not to be confused with the Blade Element Momentum theory) theory approaches are often used in combination on the same platform model, sometimes applied to different elements of the same structure depending on their shape. When using the potential flow theory approach calculating internal distributed loads and later on transferring them to stress for hull design purposes is still a challenge due to the large ammount of load cases needed and the complexity of the structure. Furthermore, accounting for platform flexibility is also difficult in most codes using BEM theory due to the same reasons. Different approaches have been proposed by different authors, and currently there is not a single best industry practice for this. This paper presents a method for accounting for platform flexibility when using BEM theory. A range of methods for the load to stress transfer are also presented and the advantages and disadvantages between them are discussed. The choice of one or another method will depend heavily on the platform structure, and different methods might be used and combined for the same platform depending on the shape of the different elements within it. The different methods presented here involve performing coupled loads analysis using the aero-elastic software Bladed and multiple bodies to represent the floating platform in order to obtain internal loads at different points in the structure, as well as allowing for platform flexiblity modelling. Bladed can model multiple hydrodynamic bodies including the hydrodynamic effects between (e.g. coupled terms in the radiation force). The approach used in the current study is based on a platform modelled with the hydrodynamic loading distributed over independent sections, but originally computed from a single body BEM calculation. This simplification offers significant gains in computational efficiency and is expected to be valid for many types of floating structure, whist still allowing for some platform flexiblity to be modelled. The simulation resultant time series can later on be postprocessed to obtain distributed pressure forces on the platform wetted surface and transfer those onto a Finite Element code. Different options are presented here on how to perform this last step for both extreme and fatigue analysis of the hull structure. A couple of examples are shown using the OC3 spar and OC4 semisubmersible, focusing on a subsection of the structures to demonstrate the methodology.
机译:近年来,海上浮动风电行业发展迅速,大多数作者现在都趋向于需要使用基于时域模拟的航空-水-动力-弹性软件进行浮动基础设计的耦合载荷分析。仍然存在不同的流体力学理论,它们的应用取决于浮动平台的特性。 Morison方程和边界元素法(BEM,不要与Blade Element Momentum理论相混淆)理论方法通常在同一平台模型上结合使用,有时会根据其形状应用于相同结构的不同元素。当使用势流理论方法来计算内部分布的载荷并随后将它们传递到船体设计目的的应力时,由于需要大量的载荷工况和结构的复杂性,仍然是一个挑战。此外,由于相同的原因,在大多数使用BEM理论的代码中,也很难考虑平台灵活性。不同的作者提出了不同的方法,并且目前还没有一个最佳的行业实践。本文提出了一种在使用BEM理论时考虑平台灵活性的方法。还介绍了一系列将载荷传递到应力的方法,并讨论了它们之间的优缺点。一种或另一种方法的选择将在很大程度上取决于平台的结构,并且根据同一平台中不同元素的形状,可能会针对同一平台使用和组合不同的方法。这里介绍的不同方法涉及使用气动弹性软件Bladed和多个实体执行耦合载荷分析以表示浮动平台,以便获得结构中不同点的内部载荷,并允许进行平台灵活性建模。叶片式可以模拟多个流体动力体,包括之间的流体动力效应(例如,辐射力中的耦合项)。当前研究中使用的方法基于一个平台,该平台的流体动力载荷分布在独立的截面上,但最初是从单体BEM计算得出的。这种简化极大地提高了计算效率,并且有望对许多类型的浮动结构有效,尽管这样仍然可以对某些平台灵活性进行建模。随后可以对模拟所得的时间序列进行后处理,以获得在平台润湿表面上的分布压力,并将其传递到有限元代码上。此处针对如何对船体结构进行极限和疲劳分析的最后一步提出了不同的选择。使用OC3晶石和OC4半潜式显示了几个示例,重点放在结构的一个小节上,以演示该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号