首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >EFFICIENT COMPUTATION OF IRREGULAR WAVE WIRE STRESSES IN FLEXIBLE RISERS
【24h】

EFFICIENT COMPUTATION OF IRREGULAR WAVE WIRE STRESSES IN FLEXIBLE RISERS

机译:柔性立管中不规则波线应力的有效计算

获取原文

摘要

Accurate computation of tensile armor wire stresses remains a major challenge in flexible riser fatigue life predictions and integrity management. Accuracy of the results relies heavily on capturing the kinematics of the flexible's helically contra-wound tensile armor layers and their interaction with the other metallic and thermo-plastic layers in a dynamic simulation. The standard industry practice to assess the fatigue life of flexibles is to use high fidelity 3D Finite Element Models (FEMs) to capture the complex kinematics and produce accurate stresses. However, direct simulation of flexible riser detailed FEMs is limited to regular wave analyses and computation of wire stress time-histories subjected to irregular waves have been computationally infeasible. This is due to the complexity of the nonlinear FEM and the long simulation time of the irregular wave environment coupled with large number of fatigue sea states. As a result, simplified approaches which do not directly simulate the local model and instead assume that wire stresses can be interpolated based on static stress versus curvature material curves within a pre-defined tension /pressure envelope have been utilized. This paper utilizes Nonlinear Dynamic Substructuring (NDS), a simulation-based approach that that extends the framework of dynamic substructuring to nonlinear problems. NDS enables the efficient nonlinear dynamic simulation of multiple pitch lengths of detailed flexible riser FEM subjected to irregular wave inputs and the computation of wire stress time-histories at any location on the local model. In this paper, a 14-inch diameter flexible riser under consideration by ExxonMobil is subjected to vessel motion and wave load in irregular wave environments and is modeled using a detailed 3D FEM and simulated via NDS. The flexible riser design features four tensile armor layers to mitigate localized lateral buckling of the wires near the touch down point. Tension and curvature time-histories of the riser near the hang-off, calculated from a conventional beam model global analysis, is used to drive a 5.1m long local model. Irregular wave wire stress time-histories extracted at the corners of the tensile armor wires are used to compute the fatigue life of the flexible. To demonstrate the inaccuracies associated with the regular wave approach, fatigue life is computed via the regular wave approach and compared against the irregular wave approach. It is shown that the NDS capability to efficiently compute irregular waves mitigates over- and under- predictions due to environment idealizations leading to a more accurate and reliable flexible riser life prediction and structural integrity assessment.
机译:精确的拉伸铠装钢丝应力计算仍然是柔性立管疲劳寿命预测和完整性管理中的主要挑战。结果的准确性在很大程度上取决于在动态模拟中捕获柔性螺旋缠绕缠绕的拉伸铠装层的运动学以及它们与其他金属和热塑性塑料层的相互作用。评估柔韧性疲劳寿命的标准行业惯例是使用高保真3D有限元模型(FEM)捕获复杂的运动学并产生准确的应力。然而,柔性立管详细有限元的直接模拟仅限于规则波分析,并且计算不规则波时的线应力时间历程在计算上是不可行的。这是由于非线性有限元法的复杂性以及不规则波环境的长仿真时间以及大量的疲劳海况所致。结果,已经使用了简化的方法,这些方法不直接模拟局部模型,而是假设可以基于预定义的拉力/压力包络线中的静态应力与曲率材料曲线来内插钢丝应力。本文利用非线性动态子结构(NDS),这是一种基于模拟的方法,将动态子结构的框架扩展到非线性问题。 NDS可以对不规则波输入下的详细柔性立管FEM的多个节距长度进行有效的非线性动态仿真,并可以在局部模型上的任何位置计算线应力时程。在本文中,埃克森美孚(ExxonMobil)考虑的14英寸直径柔性立管在不规则波浪环境中经受血管运动和波浪载荷,并使用详细的3D FEM进行建模并通过NDS进行模拟。柔性立管设计具有四个拉伸铠装层,以减轻接近触碰点时电线的局部横向屈曲。根据常规的梁模型全局分析计算得出,吊索附近的立管的张力和曲率时程用于驱动5.1m长的局部模型。在拉伸铠装线角处提取的不规则波浪线应力时程用于计算挠性件的疲劳寿命。为了证明与常规波方法相关的不准确性,通过常规波方法计算了疲劳寿命,并将其与不规则波方法进行了比较。结果表明,由于环境的理想化,NDS能够有效地计算不规则波,从而减轻了过高和过低的预测,从而导致了更加准确和可靠的柔性立管寿命预测和结构完整性评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号