首页> 外文会议>Annual International Battery Seminar and exhibit >High Throughput Experimental Methodologies for Accelerating Solid State Lithium-Ion Battery Development
【24h】

High Throughput Experimental Methodologies for Accelerating Solid State Lithium-Ion Battery Development

机译:加速固态锂离子电池开发的高通量实验方法

获取原文

摘要

Breakthrough in lithium-ion battery technology is crucial for modern sustainable energy applications, especially the electric vehicles. Compared to conventional lithium-ion battery with liquid electrolyte, solid state battery with solid inorganic electrolyte or flexible composite electrolyte possesses the advantages of higher energy density, higher working voltage, non-flammability, and lithium dendrite prevention [1,2]. One of the main challenges of developing this next generation of batteries is to find the optimized structure and composition of solid electrolyte material, which usually has a ternary, quaternary, or even more complex composition. High throughput experimental methodologies, in which dozens of parallel experiments are carried out with small sample quantities per experiment, can greatly accelerate new material discovery and process optimization for solid electrolyte and solid state lithium ion battery development.To support this high-throughput experimental demand, the experimental instrument must meet requirements such as maximizing productivity through parallel experiments and automation, working with small amount of sample per experiment, and compatibility with Ar gas glove box operation. MTI Corporation (Richmond CA, USA) strive to provide highly efficient and economical experimental equipment and solutions for high throughput battery development. In this work, MTI Corporation's efforts on developing high throughput experimental solutions for solid state lithium-ion battery are discussed.The first step is solid inorganic electrolyte powder synthesis and pellet fabrication. For solid dispensing, four or more dispensing heads and balances, with one dispensing head for each solid electrolyte component, are integrated with a carousel type sample changer for automatic powder dispensing of 32 electrolyte powder samples. Next, the powder samples are ball milled in a planetary ball mill with 4 sets of 4 cavities milling jars for totally 16 parallel experiments. Then, the electrolyte powders are pressed into pellets for coin cell assembly using a hydraulic press with carousel type 16-sample changer. The powders and pellets are sintered, annealed, or quenched in a compact, 16-channel tube furnace up to 1700 °C with quenching option.Novel sintering techniques, such as spark plasma sintering (SPS) and hydrothermal-assisted cold sintering process (CSP) , are employed for solid inorganic electrolyte sintering. These techniques, whether for the fast processing time of spark plasma sintering, or the low temperature processing capability of cold sintering process, open up possibilities of low cost, rapid fabrication of solid electrolytes, cathode pellets, or even the whole solid electrode-electrolyte stack .Solid inorganic electrolyte is usually too brittle for practical use. Composite electrolyte, which is made by embedding solid inorganic electrolyte powder in flexible polymer electrolyte, is a promising solution. By varying the ratio between inorganic and polymer components, a balance between electrical and mechanical properties can be achieved . The process of composite electrolyte fabrication starts with powder and liquid dispensing. For liquid dispensing, an automatic pipette robot with integrated XYZ stage is used for dispensing organic solvents and liquid electrolytes. The as-prepared high viscosity samples are mixed in a planetary centrifuge mixer for mixing 6 samples of 5 ml in one run. With addition of a 4-channel film applicator, existing doctor blade coater can be modified into high throughput equipment. The as-prepared sample with four strips of different composite electrolytes can be passed onto hot calendar machine or hot press for solvent evaporation and thickness reduction, and coin cell die cutter for high throughput preparation of composite electrolyte discs.Finally, the solid electrolyte powder and discs are analyzed by a compact X-ray fluorescence (XRF) spectrometer integrated with a XY sample stage for high throughput composition characterization. 32 samples can be qualitatively and quantitatively analyzed in one auto run. For high throughput assembling of coin cells, one route is to use an automatic coin cell crimper machine to facilitate coin cell assembling process. The other route is to use multiple split cells with quick, easy, repeatable assembling for parallel comparison of different solid electrolyte materials. This further saves time and labor by eliminating the coin cell crimping step.In conclusion, high throughput experimental solutions accelerate new material discovery and process optimization for solid state lithium ion battery research. Existing experimental techniques are modified for high throughput application by smart design of sample fixture, by integration, and by automation. Novel processing methods, such as spark plasma sintering and cold sintering, enable reduced processing time and low production cost.
机译:锂离子电池技术的突破对于现代可持续能源应用,尤其是电动汽车至关重要。与传统的带有液态电解质的锂离子电池相比,带有固态无机电解质或柔性复合电解质的固态电池具有更高的能量密度,更高的工作电压,不燃性和防止锂枝晶的优点[1,2]。开发这种下一代电池的主要挑战之一是找到通常具有三元,四元或更复杂组成的固体电解质材料的优化结构和组成。高通量实验方法(其中每个实验使用少量样品进行数十个并行实验)可以极大地加快用于固体电解质和固态锂离子电池开发的新材料发现和工艺优化。为满足这种高通量实验需求,实验仪器必须满足以下要求,例如通过并行实验和自动化使生产率最大化,每个实验处理少量样品以及与Ar气手套箱操作兼容。 MTI公司(美国里士满,加利福尼亚州)致力于为高通量电池开发提供高效,经济的实验设备和解决方案。在这项工作中,讨论了MTI公司为固态锂离子电池开发高通量实验解决方案的努力。 第一步是固体无机电解质粉末的合成和颗粒的制造。对于固体分配,四个或更多分配头和天平(每个固体电解质组分有一个分配头)与转盘式进样器集成在一起,可自动分配32种电解质粉末样品。接下来,将粉末样品在带有4组4腔研磨罐的行星式球磨机中进行球磨,总共进行16个平行实验。然后,使用带有转盘式16进样器的液压机将电解质粉末压成小片以组装纽扣电池。粉末和球团在紧凑的16通道管式炉中进行烧结,退火或淬火,最高温度可达1700°C,并带有淬火选项。 固态无机电解质的烧结采用了新颖的烧结技术,例如火花等离子体烧结(SPS)和水热辅助冷烧结工艺(CSP)。这些技术,无论是用于火花等离子体烧结的快速处理时间,还是用于冷烧结工艺的低温处理能力,都为低成本,快速制造固体电解质,阴极颗粒甚至整个固体电极-电解质叠层提供了可能性。 。 固体无机电解质通常对于实际使用而言太脆。通过将固体无机电解质粉末嵌入柔性聚合物电解质中制成的复合电解质是一种很有前途的解决方案。通过改变无机和聚合物组分之间的比例,可以实现电性能和机械性能之间的平衡。复合电解质的制造过程始于粉末和液体分配。对于液体分配,具有集成XYZ工作台的自动移液器机器人用于分配有机溶剂和液体电解质。将制备好的高粘度样品在行星式离心机中混合,一次混合6个5 ml样品。通过增加一个4通道的薄膜涂布机,可以将现有的刮墨刀涂布机改造成高产量的设备。可以将具有四个不同复合电解质条的制备好的样品送入热压延机或热压机中以蒸发溶剂并减小厚度,并通过纽扣模切机进行高通量制备复合电解质圆盘。 最后,通过集成有XY样品台的紧凑型X射线荧光(XRF)光谱仪分析固体电解质粉末和圆盘,以进行高通量的成分表征。一次自动运行即可定性和定量分析32个样品。为了高效率地组装纽扣电池,一种途径是使用自动纽扣电池压接机来促进纽扣电池的组装过程。另一种方法是使用具有快速,简便,可重复组装的多个拆分式电池,以并行比较不同的固体电解质材料。通过消除纽扣电池的压接步骤,这进一步节省了时间和劳力。 总之,高通量实验解决方案可加快固态锂离子电池研究的新材料发现和工艺优化。现有的实验技术已通过智能设计样品夹具,集成和自动化来进行修改,以实现高通量应用。新颖的加工方法,例如火花等离子体烧结和冷烧结,可减少加工时间并降低生产成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号