首页> 外文会议>AIAA aerodynamic measurement technology and ground testing conference;AIAA aviation forum >New Large-Scale Model Inlet Performance Testing Capability for the AEDC PWT 16T/S Wind Tunnels
【24h】

New Large-Scale Model Inlet Performance Testing Capability for the AEDC PWT 16T/S Wind Tunnels

机译:AEDC PWT 16T / S风洞的新型大型模型进气性能测试能力

获取原文

摘要

Based on the recommended practice for wind tunnel propulsion integration testing, inlet model scale should be greater than 10% (Ref. 1). However, application of this minimum recommendation does not leave much room for auxiliary flows controlled by individual flow plugs or for scaling bleed/bypass systems that may be more sensitive to Reynolds number effects. Therefore a 15% or larger scale model is desirable. Over time as turbine engine face diameters have increased, the scale of wind tunnel models has been decreasing because of a desire to use an existing Aerodynamic Interface Plane (AIP) rake, resulting in models near or at the minimum recommended scale. Other than smaller model scale, a secondary concern is the increased application of highly-offset inlet flow paths in aircraft design. Highly-offset flow paths can cause increased flow angularity (generally caused by swirl) at the engine airframe AIP. Traditional style total pressure probes cannot accurately measure total pressure in a high flow angularity environment. As the use of highly-offset flow path systems that may generate flow angularity has increased, the desire to measure the swirl angle (the angle of the flow entering the AIP) has become of interest. Currently, most wind tunnel test programs employ a separate AIP with swirl probes to obtain the flow angularity data, requiring a significant model hardware change and repeating the test matrix. These reasons (scale, old probe design, multiple AIPs) and the average age of the available engine mass flow systems (MFS) have driven AEDC to invest 1.6 million dollars into two new engine mass flow systems. Details of the requirements process for the engine mass flow systems, the design and CFD data (including a CFD calibration), and the results and conclusion are contained herein.
机译:根据风洞推进集成测试的推荐做法,进气口模型比例应大于10%(参考资料1)。但是,此最低建议的应用不会为由单个流量塞控制的辅助流量或对雷诺数效应可能更敏感的定标放气/旁通系统留出足够的空间。因此,需要15%或更大比例的模型。随着时间的流逝,随着涡轮发动机端面直径的增加,由于希望使用现有的空气动力接口平面(AIP)耙子,风洞模型的比例一直在减小,从而导致模型接近或处于最小建议比例。除了较小的模型比例外,次要关注的是在飞机设计中越来越多地使用高度偏移的进气流路。高度偏移的流路会导致发动机机身AIP处的流角增加(通常由涡流引起)。传统型的总压力探头无法在高流量角度环境中准确测量总压力。随着可能产生流动角度的高度偏移的流动路径系统的使用日益增加,人们对测量旋流角(进入AIP的流动角度)的需求已引起关注。当前,大多数风洞测试程序都使用带有涡流探头的单独的AIP来获取流动角度数据,这需要对模型硬件进行重大更改并重复测试矩阵。由于这些原因(规模,旧的探头设计,多个AIP)以及可用的发动机质量流量系统(MFS)的平均使用年限,驱使AEDC投资160万美元用于两个新的发动机质量流量系统。此处包含发动机质量流量系统的要求过程,设计和CFD数据(包括CFD校准)以及结果和结论的详细信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号