首页> 外文会议>IEEE International Conference on Nanotechnology >Nanoplasmonic Enhancement of Semiconductor Quantum Emitters
【24h】

Nanoplasmonic Enhancement of Semiconductor Quantum Emitters

机译:半导体量子发射体的纳米等离子体增强。

获取原文

摘要

Semiconductor quantum dots (QDs) are excellent candidates for single photon quantum emission applications, due to their excellent stability, narrow spectral linewidth and nanosecond scale radiative lifetime [1]. A strong advantage of this platform over competing technologies is the possibility to benefit of the accurate control of the photonic environment, offered by advanced nanophotonics fabrication techniques. For example, QDs can be embedded in nanopillars, nanowires (NWs), microdiscs or more exotic nano-structures, to enhance the efficiency of the emission [1]-[4]. Additionally, these micro- and nano-cavities can be further decorated with complex nanoplasmonic structures, to increase, optimize and ultimately control their emission properties[2]. However, most nanolithographic techniques require a number of complex fabrication steps, to align carefully the metallic features to the semiconductor geometries. This difficulty is exacerbated if the QDs are distributed randomly in a substrate. Here, we demonstrate a direct writing approach to create metallic nanostructures on semiconductor NWs, resorting to the electron-beam-induced deposition (EBID) method [5]. EBID uses focused electron beam (FEB) to reduce gas precursors injected locally in proximity of the sample. The quality of the deposited materials depends on the gas flow, temperature, the scanning speed of the FEB and its energy. This approach permits to create three-dimensional patterns with nanometric resolution and positional accuracy and does not need wet lithographic steps.
机译:半导体量子点(QD)具有出色的稳定性,窄的谱线宽度和纳秒级的辐射寿命,是单光子量子发射应用的极佳候选者[1]。与竞争技术相比,该平台的一个强大优势是可以受益于先进纳米光子制造技术提供的光子环境的精确控制。例如,量子点可以嵌入纳米柱,纳米线(NW),微盘或更多奇异的纳米结构中,以提高发射效率[1]-[4]。另外,这些微腔和纳米腔可以用复杂的纳米等离子体结构进一步修饰,以增加,优化并最终控制其发射特性[2]。然而,大多数纳米光刻技术需要许多复杂的制造步骤,以使金属特征与半导体几何形状仔细对齐。如果量子点在基板中随机分布,则将加剧这一困难。在这里,我们展示了一种直接写入方法,可利用电子束诱导沉积(EBID)方法在半导体NW上创建金属纳米结构[5]。 EBID使用聚焦电子束(FEB)来减少在样品附近局部注入的气体前体。沉积材料的质量取决于气流,温度,FEB的扫描速度及其能量。这种方法允许创建具有纳米分辨率和位置精度的三维图案,并且不需要湿法光刻步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号