首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Waste Heat Recovery From Distributed Rack-based Fuel Cells Using Thermoelectric Generators
【24h】

Waste Heat Recovery From Distributed Rack-based Fuel Cells Using Thermoelectric Generators

机译:使用热电发电机从分布式机架式燃料电池中回收余热

获取原文
获取外文期刊封面目录资料

摘要

Off-grid power generation has been demonstrated in data centers through the deployment of site-specific centralized power plants utiLizing gas turbine or fuel cell-based power generation. Because power is centrally generated, power distribution requires a high voltage power grid within the data center with its ancillary storage and conditioning requirements and equipment. An alternative approach is a completely decentralized distributed power generation system in which fuel cells deployed within individual server racks provide power localized to that rack only. Among other advantages, such an approach also greatly increases the ability to modulate and control power to individual rack units. Because the Solid Oxide Fuel Cells (SOFC) proposed in this approach are air-cooled and have extremely high air exhaust temperatures, of order 800 °C, the optimal energy efficient design of an overall localized fuel-cell power generation system should also consider the opportunities to recover and re-use the waste heat. This paper reports on the development of a coupled thermal-electrical model of a thermoelectric generator (TEG) based energy recovery system operating between the fuel cell hot exhaust air temperature and a warm water cooling system deployed within the rack for server cooling. The power generation system consisted of a TEG module sandwiched between a hot air heat exchanger and a colder water based heat exchanger. The design of the TEG module for maximum power generation is heavily coupled with thermal and electrical conditions. Distribution of temperature on generator surfaces change the optimum design, hence the optimization of generator system required co-optimization with the design of the heat exchangers. This paper presents the results of electro-thermal co-optimization, which considers the impact of the flow rates and temperatures of exhaust gas and cooling water, parallel and counter-flow arrangements, as well as the TEG packaging design including junctions, fractional area coverage, and substrate thickness.
机译:通过部署特定地点的集中式发电厂,利用燃气轮机或基于燃料电池的发电厂,已在数据中心证明了离网发电。由于电源是集中产生的,因此配电需要数据中心内的高压电网及其辅助存储和调节要求以及设备。另一种方法是完全分散的分布式发电系统,其中在单个服务器机架内部署的燃料电池仅提供局域化的功率。除其他优点外,这种方法还大大提高了调制和控制单个机架单元电源的能力。由于采用这种方法提出的固体氧化物燃料电池(SOFC)是空气冷却的,并且具有极高的排气温度,约为800°C,因此,整个局部燃料电池发电系统的最佳节能设计也应考虑以下因素:回收和再利用废热的机会。本文报告了基于热电发电机(TEG)的能量回收系统的耦合热电模型的开发情况,该系统在燃料电池热排气温度和机架内部署的用于服务器冷却的温水冷却系统之间运行。发电系统由TEG模块组成,该模块夹在热空气热交换器和冷水热交换器之间。 TEG模块的最大发电量设计与热和电条件紧密相关。发电机表面温度的分布改变了最佳设计,因此,发电机系统的优化需要与换热器的设计共同优化。本文介绍了电热共优化的结果,该结果考虑了废气和冷却水的流速和温度,平行和逆流布置以及TEG包装设计(包括结点,小数区域覆盖)的影响以及基材厚度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号