【24h】

Optimization of TEG for Human Body Powered Mobile Devices

机译:人体供电移动设备的TEG优化

获取原文

摘要

Most of the energy leaves our bodies in the form of heat simply due to existing temperature gradients in the environment. An average human body at rest emits about 350,000 J of energy per hour, which is roughly equivalent to the energy given off by a 100-Watts incandescent light bulb[1]. As a matter of fact, the conversion of human-body-heat into electrical energy using a solid-state thermoelectric generator (TEG) sparks interest in creating wearable self-powered mobile electronics and sensors[2]. This paper develops a prototype to investigate the performance of a human-body-heat-powered mobile fan using a commercial TEG and a heat-sink structure[3]. The heat-sink is attached to the cold-side of the TEG, with a 20mm x 7mm DC motor centered by the pin fins. As body-heat from the wrist is being applied to the hot-side of the TEG via thermal conduction, a voltage is generated across the terminal of the TEG to power the DC motor, whereas the operating DC motor produces further cooling to the heat-sink through forced convection. The proposed model is calculated analytically by solving governing equations of heat transfer, numerically via ANSYS Thermo-Electric simulation, and experimentally by testing the customized model. The temperature and voltage distributions in the TEG are analyzed, and the effects of the material properties, sizing of the TEG and heat-sink structures, and thermal contact resistance at the interface between TEG and human-skin are discussed. The results obtained in this research can be utilized for optimal structural designs of wearable TEGs and for material selection to enhance the power generation for body-heat-powered mobile devices.
机译:仅仅由于环境中存在的温度梯度,大部分能量以热的形式离开我们的身体。人体平均静止时每小时可散发约350,000 J能量,大致相当于100瓦白炽灯泡释放的能量 [1] 。实际上,使用固态热电发生器(TEG)将人体热转换为电能引发了人们对创建可穿戴式自供电移动电子设备和传感器的兴趣 [2] 。本文开发了一个原型,以研究使用商用TEG和散热器结构的人体热动力移动风扇的性能 [3] 。散热器连接到TEG的冷侧,并通过一个20mm x 7mm的直流电动机以销鳍为中心。当手腕的身体热量通过热传导施加到TEG的热侧时,TEG端子两端会产生电压,以为DC电动机供电,而运行中的DC电动机则进一步冷却热量,通过强制对流沉没。通过求解传热的控制方程,通过ANSYS热电仿真以数值方式进行解析计算,并通过测试定制模型进行实验来计算所提出的模型。分析了TEG中的温度和电压分布,并讨论了材料性能,TEG尺寸和散热结构的影响以及TEG与人皮肤之间界面的热接触电阻的影响。这项研究中获得的结果可用于可穿戴式TEG的最佳结构设计以及材料选择,以增强体热动力移动设备的发电能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号