首页> 外文会议>ASME international conference on energy sustainability >FLUXTRACER - A 3D-PARTITI0NING AND RADIANT FLUX COMPUTER TOOL TO ANALYSE THE OPTICAL BEHAVIOUR OF LIGHT COLLECTION AND CONCENTRATION SUBSYSTEMS USING HIGH PERFORMANCE COMPUTERS
【24h】

FLUXTRACER - A 3D-PARTITI0NING AND RADIANT FLUX COMPUTER TOOL TO ANALYSE THE OPTICAL BEHAVIOUR OF LIGHT COLLECTION AND CONCENTRATION SUBSYSTEMS USING HIGH PERFORMANCE COMPUTERS

机译:FLUXTRACER-使用高性能计算机分析光收集和集中子系统的光学行为的3D辐射和辐射通量计算机工具

获取原文

摘要

The light collection and concentration subsystem (LCCS) of any concentrating solar thermal (CST) system is composed of the surfaces that collect and concentrate the sunlight and of the input surfaces of the receivers, or receivers' envelopes, where the light is concentrated. For all commercial CST technologies the LCCS is, together with the power block, the subsystem that has more influence in the overall performance and cost. Thus, its optimization is critical to increase the cost-competitiveness of these systems. This optimization requires, in many cases, the optimization of the position, geometry and size of a very large number of solar collecting and concentrating surfaces as well as the optimization of the shape and size of the input surfaces of the receivers where the sunlight is concentrated. Because a full optimization requires the exploration of a configuration space with a very large number of dimensions, the traditional approach consist in making many initial assumptions to drastically reduce the number of dimensions of the configuration space to a handful, so that the optimization can be carried out using conventional high-end workstations in a matter of hours.However, to achieve relevant breakthroughs and to substantially increase the cost-competitiveness of CST systems a bolder approach is needed, where sophisticated design and analysis tools, engineered from the start to be used in High Performance Computers (HPC), will be combined with sophisticated optimization strategies targeted to explore and find optimal solutions in very high dimensional configuration spaces.This paper presents the first of a series of such design and analysis tools. The tool, call FluxTracer, partitions the three-dimensional space in which the LCC subsystem under analysis is immersed into volumetric pixels (voxels) and computes the radiant energy flux that traverses each voxel as a function of time. It integrates the energy density in every voxel overtime, providing detailed information regarding how the radiant energy flows in space in a given LCC subsystem and in a given period of time. This information is the cornerstone of the highly sophisticated computational LCC subsystem optimization framework The Cyprus Institute (CYI) is developing, in collaboration with the Australian National University (ANU), targeted to be used in HPC's.
机译:任何聚光太阳能热(CST)系统的聚光和聚光子系统(LCCS)都是由收集和聚集阳光的表面以及受光器的接收器或接收器的外壳的输入表面组成。对于所有商用CST技术,LCCS与电源块一起是对整体性能和成本有更大影响的子系统。因此,其优化对于提高这些系统的成本竞争力至关重要。在许多情况下,这种优化需要对大量太阳能收集和聚集表面的位置,几何形状和尺寸进行优化,以及对阳光聚集的接收器的输入表面的形状和尺寸进行优化。 。因为完全优化需要探索具有大量维的配置空间,所以传统方法包括做出许多初始假设以将配置空间的维数大大减少到少数,以便可以进行优化只需几个小时就可以使用传统的高端工作站。但是,要实现相关突破并大幅提高CST系统的成本竞争力,则需要一种大胆的方法,从一开始就使用复杂的设计和分析工具进行设计。高性能计算机(HPC)中的“优化”策略将与复杂的优化策略相结合,旨在在超高尺寸的配置空间中探索和找到最佳解决方案。本文介绍了此类设计和分析工具系列中的第一个。这个名为FluxTracer的工具将三维空间划分为3维,将要分析的LCC子系统浸入其中的三维像素(体素),并根据时间计算遍历每个体素的辐射能通量。它集成了每个体素加班时间中的能量密度,提供了有关辐射能量如何在给定的LCC子系统中以及给定的时间段内在空间中流动的详细信息。此信息是高度复杂的计算LCC子系统优化框架的基础。塞浦路斯研究所(CYI)与澳大利亚国立大学(ANU)合作开发了针对HPC的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号