首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech Forum >Robust Aeroelastic Design Optimization of Hypersonic Vehicles with Uncertainties in Aerodynamic Loads, Heat Flux, and Structure
【24h】

Robust Aeroelastic Design Optimization of Hypersonic Vehicles with Uncertainties in Aerodynamic Loads, Heat Flux, and Structure

机译:具有气动载荷,热通量和结构不确定性的高超音速飞行器的鲁棒气动弹性设计优化

获取原文

摘要

This study sets the framework for robust aeroelastic design optimization of hypersonic vehicles with mixed uncertainties. A typical hypersonic low-aspect-ratio wing is used as an example to perform the optimization process. Uncertainties in aerodynamic loads, heat flux, and structural dimensions are considered simultaneously within the aerothermoelastic analysis and optimization process. Uncertainty in aerodynamic loads is introduced by aerodynamic load corrections method, and the critical aerodynamic load case can be obtained by sequential quadratic programming (SQP) method. Interval analysis method is employed to perform the transient heat transfer analysis when there is uncertainty in heat flux, and then genetic algorithm is used to obtained critical thermal load case. Uncertainty in structural dimensions is considered when the individual fitness is calculated. Sensitivity method is used to improve the robustness of the existing constraints and provide additional constraints. The author edited genetic algorithm codes together with aerothermoelastic analysis framework with mixed uncertainties form the robust optimization process. Optimization results show that the robust aeroelastic optimization process is a powerful tool to obtain the optimal solution which is capable of satisfying multi-constraints even when there are mixed uncertainties in different disciplines. Though the weight of optimal solution is greater than that without uncertainties, the flight safety can be ensured by this robust optimization process.
机译:这项研究为混合不确定性的高超音速飞行器的鲁棒气动弹性设计优化奠定了基础。以典型的高超声速低纵横比机翼为例来执行优化过程。在气动热弹性分析和优化过程中,同时考虑了气动载荷,热通量和结构尺寸的不确定性。通过气动载荷校正方法引入了气动载荷的不确定性,并且可以通过顺序二次规划(SQP)方法获得临界气动载荷情况。在热通量不确定的情况下,采用区间分析法进行瞬态传热分析,然后采用遗传算法获得临界热负荷情况。计算个体适合度时,应考虑结构尺寸的不确定性。灵敏度方法用于提高现有约束的鲁棒性并提供其他约束。作者编辑了遗传算法代码,并结合了具有不确定性的气动弹性分析框架,形成了鲁棒的优化过程。优化结果表明,鲁棒的气动弹性优化过程是获得最优解的强大工具,即使在不同学科中存在不确定性时,该解也能够满足多约束条件。尽管最佳解决方案的权重要大于没有不确定性的权重,但是通过这种强大的优化过程可以确保飞行安全。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号