首页> 外文会议>Riso international symposium on materials science >1 billion tons of nanostructure - segregation engineering enables confined transformation effects at lattice defects in steels
【24h】

1 billion tons of nanostructure - segregation engineering enables confined transformation effects at lattice defects in steels

机译:10亿吨纳米结构-偏析工程可在钢的晶格缺陷处实现有限的转变效应

获取原文

摘要

The microstructure of complex steels can be manipulated by utilising the interaction between the local mechanical distortions associated with lattice defects, such as dislocations and grain boundaries, and solute components that segregate to them. Phenomenologically these phenomena can be interpreted in terms of the classical Gibbs adsorption isotherm, which states that the total system energy can be reduced by removing solute atoms from the bulk and segregating them at lattice defects. Here we show how this principle can be utilised through appropriate heat treatments not only to enrich lattice defects by solute atoms, but also to further change these decorated regions into confined ordered structural states or even to trigger localized decomposition and phase transformations. This principle, which is based on the interplay between the structure and mechanics of lattice defects on the one hand and the chemistry of the alloy's solute components on the other hand, is referred to as segregation engineering. In this concept solute decoration to specific microstructural traps, viz. lattice defects, is not taken as an undesired effect, but instead seen as a tool for manipulating specific lattice defect structures, compositions and properties that lead to beneficial material behavior. Owing to the fairly well established underlying thermodynamic and kinetic principles, such local decoration and transformation effects can be tuned to proceed in a self-organised manner by adjusting (i) the heat treatment temperatures for matching the desired trapping, transformation or reversion regimes, and (ii) the corresponding timescales for sufficient solute diffusion to the targeted defects. Here we show how this segregation engineering principle can be applied to design self-organized nano- and microstructures in complex steels for improving their mechanical properties.
机译:可以通过利用与晶格缺陷(例如位错和晶界)相关的局部机械变形与偏析到它们的溶质成分之间的相互作用来控制复杂钢的微观结构。从现象学上讲,这些现象可以用经典的吉布斯吸附等温线来解释,该吸附等温线表明,可以通过从溶质中除去溶质原子并将其隔离在晶格缺陷处来降低总系统能量。在这里,我们展示了如何通过适当的热处理来利用这一原理,不仅可以通过溶质原子来丰富晶格缺陷,而且可以将这些装饰区域进一步改变为有限的有序结构态,甚至触发局部分解和相变。该原理一方面基于晶格缺陷的结构和力学之间的相互作用,另一方面基于合金的溶质组分的化学作用之间的相互作用,因此被称为隔离工程。在这个概念中,溶质装饰到特定的微结构陷阱,即。晶格缺陷并非被视为不希望的效果,而是被视为操纵特定晶格缺陷结构,成分和特性的工具,这些结构,成分和特性可导致有益的材料行为。由于已经建立了很好的基本热力学和动力学原理,可以通过调整(i)热处理温度以匹配所需的捕集,转化或还原方式,来调节这种局部装饰和转化效应,以自组织方式进行。 (ii)足够的溶质扩散到目标缺陷的相应时标。在这里,我们展示了这种隔离工程原理如何可用于设计复杂钢中的自组织纳米和微观结构,以改善其机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号