首页> 外文会议>International symposium on shock waves 1 >Control of Boundary Layer Separation in Supersonic Flow Using Injection Through Microramps
【24h】

Control of Boundary Layer Separation in Supersonic Flow Using Injection Through Microramps

机译:通过微斜坡注入控制超声波流中的边界层分离

获取原文

摘要

This study investigated efficacy of injection through MVGs to reduce separation behind a normal shock in a supersonic flow. Three cases, (A) baseline case-plain wall, (B) three numbers of conventional MVGs, and (C) same MVGs with injection of air through them, were investigated using schlieren images, oil flow images, and wall pressure distribution. Oil flow patterns show that, compared to case A, the conventional MVGs decreased both separation bubble and upstream influence through corner separation. Case C decreased the separation bubble to a large extent and also caused flow all along the tunnel floor in between the separation bubbles. Distributed wall jet injection through multiple MVGs causes a uniform increase of energy in the boundary layer across the span of the test section, suppressing separation to a large extent across the span. Schlieren images show that the case B has an oblique shock at the trailing edge and a growing low momentum region behind the MVGs. Case C, on the other hand, shows weak compression waves at the trailing edge of the MVGs and no growing low momentum regions. Case C had the most stable shock of all the three cases. Pressure data shows that the upstream influence due to the corner separation for case C is similar to case A, while the case B has lesser upstream influence. However, the pressure rise just downstream of shock is highest for case C due to the absence of large separation bubbles. Injection through MVGs is an effective method to suppress boundary layer separation behind normal shocks and to decrease shock oscillations. While corner separation increases by a small amount, advantage to intake flows due to very small centerline separation is high.
机译:这项研究调查了通过MVG注射以减少超声速流动中正常冲击后的分离效果。使用schlieren图像,油流图像和壁压力分布,研究了三种情况,(A)基线情况,(B)三种常规MVG,以及(C)注入空气的相同MVG。油流模式显示,与情况A相比,常规MVG减少了分离气泡和通过转角分离而对上游的影响。情况C在很大程度上减少了分离气泡,并在分离气泡之间沿整个隧道底板引起了流动。通过多个MVG进行的分布式壁面喷射注入会在测试区域的整个跨度中在边界层中使能量均匀增加,从而在很大程度上抑制了跨度中的分离。 Schlieren的图像显示,情况B在后缘具有倾斜冲击,并且在MVG后面具有越来越低的动量区域。另一方面,情况C在MVG的后缘显示出较弱的压缩波,并且没有增长的低动量区域。在这三个案例中,案例C的冲击最为稳定。压力数据显示,案例C由于拐角分离而产生的上游影响与案例A相似,而案例B的上游影响较小。然而,由于不存在大的分离气泡,对于情况C,冲击下游的压力升高最高。通过MVG注入是抑制正常冲击后边界层分离并减少冲击振荡的有效方法。尽管拐角间隔增加了少量,但由于中心线间隔非常小,进气流量的优势很高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号