【24h】

CPU cooling with a thermosiphon loop with tapered manifold (OMM)

机译:使用带有锥形歧管(OMM)的热虹吸回路进行CPU冷却

获取原文

摘要

Data center cooling presents unique challenges to reduce global energy consumption and fluid inventory. The current work addresses these challenges by employing a thermosiphon system using two-phase cooling which improves the system efficiency through a drastic increase in heat dissipation ability. The latent heat transfer is more effective than its sensible heat counterpart. The system performance is typically characterized by its Critical Heat Flux (CHF) and Heat Transfer Coefficient (HTC). An increase in CHF offers wider operating ranges while HTC dictates the efficiency of the heat transfer process. In the current design of the cooling solution, a tapered manifold with a gap over the heater surface is employed to effectively remove the vapor away from the surface. A 3.43° tapered manifold is analyzed with HFE7000 as the working fluid in a benchtop thermosiphon. A copper chip with microchannels of width and depth of 200 μm was used for the heater surface, resulting in a CHF of 44.2 W/cm at a wall superheat of 16.4°C, and a maximum HTC of 27.3 kW/m°C. This design is then arranged to be implemented as a thermosiphon Central Processing Unit (CPU) cooler. The results are compared to current cooling techniques tested on a data center server. The efficacy of the system is evaluated against its air-cooling and liquid-cooling counterparts. The thermal footprint and the system performances are evaluated for each case in this study. The cooling solution presented here has immense potential to replace existing technologies, although certain obstacles identified here will need to be considered going forth.
机译:数据中心冷却提出了独特的挑战,以减少全球能源消耗和流体库存。当前的工作通过采用采用两相冷却的热虹吸系统解决了这些挑战,该系统通过大大提高散热能力来提高系统效率。潜热传递比其显热对应物更有效。系统性能通常以临界热通量(CHF)和传热系数(HTC)为特征。 CHF的增加提供了更宽的工作范围,而HTC则决定了传热过程的效率。在冷却溶液的当前设计中,采用在加热器表面上具有间隙的锥形歧管来有效地将蒸汽从表面去除。使用HFE7000作为台式热虹吸管中的工作流体分析3.43°锥形歧管。加热器表面使用宽度和深度为200μm的微通道的铜芯片,在壁温为16.4°C时,CHF为44.2 W / cm,最大HTC为27.3 kW / m。然后将该设计安排为热虹吸中央处理器(CPU)冷却器。将结果与在数据中心服务器上测试的当前冷却技术进行比较。相对于其空气冷却和液体冷却系统,评估了该系统的效率。在本研究中,针对每种情况评估了热足迹和系统性能。尽管这里需要考虑一些障碍,但是这里提出的冷却解决方案具有巨大的潜力来替代现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号