首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Investigation of the mechanical compliance of highly conductive and durable carbon nanotube-polymer composite thermal interface materials
【24h】

Investigation of the mechanical compliance of highly conductive and durable carbon nanotube-polymer composite thermal interface materials

机译:高导电性和耐用性的碳纳米管-聚合物复合热界面材料的机械顺应性研究

获取原文

摘要

In the past several decades, the increasing performance of integrated circuits has put increasing demands on thermal management solutions. The thermal interface resistance of a typical electronics package can often comprise the majority of the total thermal resistance. While much effort has been put into developing high conductivity materials for thermal interface material (TIM) applications, in practice the observed thermal resistances are dependent on many other factors beyond the conductance of the material. A particularly important but somewhat overlooked factor in TIM performance is the mechanical compliance of the material. CTE mismatch between the various materials in typical packages can result in TIMs that need to accommodate chip center-to-edge warpages greater than 50 um. In multichip applications TIMs may need to accommodate chip-to-chip offsets of 100 um or more. These challenges are exacerbated in burn in and device testing applications where temperatures are often higher and contact with the device is a dynamic process sometimes requiring multiple insertions per device tested. There are many different types of TIMs to help mitigate the problem including solders, greases, adhesives, phase change materials, gels, and pads. In this work, carbon nanotube-polymer composite TIMs are investigated as a potential highly compliant, low thermal resistance solution. Vertically aligned carbon nanotubes grown on metal foils can deliver low thermal resistances due to their high in plane conductivity, mechanical compliance and achievable contact area for heat transfer. As carbon nanotube height increases, the TIM becomes more mechanically compliant, but also has a higher thermal resistance. This work focuses on how to make the CNT-polymer composites mechanically compliant while keeping thermal resistance low. Carbon nanotube-polymer TIMs will be stacked to improve compliance while keeping thermal resistance low. A variable force thickness gauge is used to measure the deformation of different TIM composites at different pressures. In addition to initial deformation, compression set and TIM rebound will be evaluated to understand how the candidate TIMs will perform over time and under changing mechanical conditions.
机译:在过去的几十年中,集成电路性能的提高对热管理解决方案提出了越来越高的要求。典型的电子封装的热界面电阻通常可占总热阻的大部分。尽管已经为开发用于热界面材料(TIM)的高导电率材料付出了很多努力,但实际上,观察到的热阻取决于材料电导率以外的许多其他因素。 TIM性能中一个特别重要但被忽略的因素是材料的机械柔韧性。典型封装中各种材料之间的CTE不匹配会导致TIM需要容纳大于50 um的芯片中心到边缘翘曲。在多芯片应用中,TIM可能需要适应100 um或更大的芯片间偏移。这些挑战在温度通常更高的老化和设备测试应用中更加严重,并且与设备的接触是一个动态过程,有时每个测试设备需要多次插入。有许多不同类型的TIM可以帮助缓解问题,包括焊料,油脂,粘合剂,相变材料,凝胶和焊盘。在这项工作中,研究了碳纳米管-聚合物复合材料TIMs作为潜在的高顺应性,低热阻解决方案。在金属箔上生长的垂直排列的碳纳米管由于其较高的平面电导率,机械顺应性和可实现的传热接触面积而可提供低热阻。随着碳纳米管高度的增加,TIM变得更加机械顺应,但同时也具有更高的热阻。这项工作的重点是如何使CNT-聚合物复合材料机械相容,同时又保持较低的热阻。碳纳米管聚合物TIM将被堆叠以提高顺应性,同时保持较低的热阻。可变力测厚仪用于测量不同TIM复合材料在不同压力下的变形。除了初始变形外,还将评估压缩永久变形和TIM回弹,以了解候选TIM将随着时间的推移以及在不断变化的机械条件下的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号