首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Flow boiling heat transfer and pressure drops of R1234ze(E) in a silicon micro-pin fin evaporator
【24h】

Flow boiling heat transfer and pressure drops of R1234ze(E) in a silicon micro-pin fin evaporator

机译:硅微针翅片蒸发器中R1234ze(E)的流沸腾传热和压降

获取原文

摘要

The development of newer and more efficient cooling techniques to sustain the increasing power density of high-performance computing systems is becoming one of the major challenges in the development of microelectronics. In this framework, two-phase cooling is a promising solution for dissipating the greater amount of generated heat. In the present study an experimental investigation of two-phase flow boiling in a micro-pin fin evaporator is performed. The micro-evaporator has a heated area of 1 cm containing 66 rows of cylindrical in-line micro-pin fins with diameter, height and pitch of respectively 50 μm, 100 μm and 91.7 μm. At the entrance of the heated area an extra row of micro-pin fins with a larger diameter of 100 μm acts as inlet restrictions to avoid flow instabilities. The working fluid is R1234ze(E) tested over a wide range of conditions: mass fluxes varying from 750 kg/ms to 1750 kg/ms and heat fluxes ranging from 20 W/cm to 44 W/cm while maintaining a constant outlet saturation temperature of 35 °C. In order to assess the thermal-hydraulic performance of the current heat sink, the total pressure drops are directly measured, while local values of heat transfer coefficient are evaluated by coupling high speed flow visualization with infrared temperature measurements. According to the experimental results, the mass flux has the most significant impact on the heat transfer coefficient while heat flux is a less influential parameter. The vapor quality varies in a range between 0 and 0.45. The heat transfer coefficient in the subcooled region reaches a maximum value of about 12 kW/mK, whilst in two-phase flow it goes up to 30 kW/mK.
机译:为了维持高性能计算系统不断增加的功率密度,开发更新,更高效的冷却技术正成为微电子学发展中的主要挑战之一。在此框架中,两相冷却是一种有希望的解决方案,用于散发更多的热量。在本研究中,在微针翅片蒸发器中进行了两相流沸腾的实验研究。微型蒸发器的加热面积为1厘米,其中包含66行直径,高度和节距分别为50μm,100μm和91.7μm的圆柱形直列微型销。在加热区域的入口处,多排直径为100μm的微型针状鳍片将用作入口限制,以避免流动不稳定。在多种条件下对工作液进行了R1234ze(E)测试:质量通量从750 kg / ms到1750 kg / ms不等,热通量从20 W / cm到44 W / cm不等,同时保持恒定的出口饱和温度35°C。为了评估当前散热器的热工液压性能,直接测量总压降,同时通过将高速流动可视化与红外温度测量相结合来评估传热系数的局部值。根据实验结果,质量通量对传热系数的影响最大,而热通量的影响较小。蒸气质量在0至0.45之间的范围内变化。过冷区域中的传热系数达到最大值,约为12 kW / mK,而在两相流中,传热系数高达30 kW / mK。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号