首页> 外文会议>IEEE Nanotechnology Materials and Devices Conference >Molecular based flash cell for low power flash application: Optimization and variability evaluation
【24h】

Molecular based flash cell for low power flash application: Optimization and variability evaluation

机译:用于低功率闪光灯应用的分子基闪光灯:优化和可变性评估

获取原文
获取外文期刊封面目录资料

摘要

The field of molecular electronics continues to spur interest in the quest for miniaturization and reduction of operational power of electron devices. Most of the systems described in the literature are based on organic molecules, such as benzene, ferrocene and fullerenes. However, the use of inorganic molecules known as polyoxometalates (POMs) (see Fig.l and Fig.2) could offer several important advantages over the conventional and organic based devices. Our present work shows that POMs are more compatible with existing CMOS processes than organic molecules and they can replace the polysilicon floating gate in contemporary flash cell devices [2]. The interest in POMs for flash cell applications stems from the fact that POMs are highly redox active molecules and that they can also be doped with electronically active heteroatoms [3]. They can undergo multiple reversible reductions/oxidations, which makes them attractive candidates for multi-bit storage in flash memory cells. The molecular charge storage is localised, thus minimising cross-cell capacitive coupling, which arises from charge redistribution on the sides of a poly-Si floating gate (FG) and is one of the most critical issues with flash memories. Although this benefit is presently realised in floating gates by charge-trapping dielectric or by a metallic nano-cluster array, both technologies exhibit large variability. Charge-trap memories suffer variation in trap-density and trap energy and the size and density of nano-clusters is difficult to control. This precludes their ultimate miniaturization. In fact, the concept of using molecules as storage centers has already been demonstrated for organic redox-active molecules [1]. Here, using full 3D simulations, we evaluate correlation between the device performance (in terms of threshold voltage VT) and statistical variability, arising from the random dopant fluctuations (RDF) and POM fluctuations (POMF).
机译:分子电子学领域继续引起人们对电子设备的小型化和降低其工作能力的兴趣。文献中描述的大多数系统均基于有机分子,例如苯,二茂铁和富勒烯。但是,使用称为多金属氧酸盐(POM)的无机分子(参见图1和图2)可以提供优于常规和基于有机物的设备的多个重要优势。我们目前的工作表明,POM与有机分子相比,与现有CMOS工艺的兼容性更高,并且它们可以替代当代闪存器件中的多晶硅浮栅。 [2] 。对快闪电池应用的POM的兴趣源于以下事实:POM是高度氧化还原活性分子,并且它们也可以掺杂有电子活性杂原子 [3] 。它们可以经历多次可逆的还原/氧化,这使其成为闪存单元中多位存储的有吸引力的候选对象。分子电荷存储是局部的,因此可将跨单元电容耦合减至最小,该跨单元电容耦合是由多晶硅浮栅(FG)侧面的电荷重新分布引起的,并且是闪存中最关键的问题之一。尽管目前通过电荷捕获电介质或金属纳米簇阵列在浮栅中实现了此优势,但这两种技术均显示出较大的可变性。电荷陷阱存储器的陷阱密度和陷阱能量会发生变化,并且纳米团簇的大小和密度难以控制。这排除了它们最终的小型化。实际上,已经证明了使用分子作为存储中心的概念可用于有机氧化还原活性分子 [1] 。在这里,使用完整的3D模拟,我们评估了器件性能(根据阈值电压VT)与统计变化之间的相关性,该变化是由随机掺杂物波动(RDF)和POM波动(POMF)引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号