首页> 外文会议>ASME annual dynamic systems and control conference >A DATA MODEL FOR TURBULENCE ANALYSIS DOWNSTREAM OF AN OCEAN CURRENT TURBINE ROTOR FOR HYDROKINETIC POWER GENERATION
【24h】

A DATA MODEL FOR TURBULENCE ANALYSIS DOWNSTREAM OF AN OCEAN CURRENT TURBINE ROTOR FOR HYDROKINETIC POWER GENERATION

机译:水力发电大电流涡轮转子下流湍流分析的数据模型

获取原文

摘要

Neural networks are derived to be used as closed-form representations of mean hydrokinetic turbine performance variables. These representations can be used to obtain estimates of turbine performance when the ambient turbulence characteristics, namely in-flow velocity and turbulence intensity, are given. The neural networks were developed using a detailed hydrodynamic code, which simulates performance of a rigidly mounted hydrokinetic turbine where only rotor rotation is allowed (1-DOF). By varying the in-flow velocity (U) of the water current between 0.4m/s and 2.6m/s with a step of 0.2m/s, as well as Turbulence Intensity (TI) between 5% and 20% with a step of 2.5%, a set of variables including the output shaft power, shaft torque, force on a single blade and drag force were obtained for each case. The obtained data sets were used to train appropriately sized, feed-forward (i.e. without recirculation) neural networks. Four neural networks obtained, one for each output variable of the hydrodynamic code. Each neural net constitutes a closed-form, explicit mathematical relationship (equation) generating estimates for the corresponding dependent variable it has been trained to approximate, when presented with specific values for the independent (input) variables current velocity, U, and turbulence intensity, TI. Four output (dependent) variables of interest of the hydrodynamic code are considered: shaft power, shaft torque, force on a single blade and drag. The dependent variables are actually time-averaged steady-state values derived from each hydrodynamic code run. The results of the neural networks are validated using the background theory, as well as the data generated by the hydrodynamic code. Error of less than 1% has been achieved between the neural net output and the hydrodynamics code data values suggesting that the neural networks and the equations are usable in place of the hydrodynamic code for estimating time-averaged loadings and power production.
机译:神经网络被推导为平均水动力涡轮机性能变量的封闭形式表示。当给出了环境湍流特性(即流入速度和湍流强度)时,这些表示可用于获得涡轮机性能的估计值。使用详细的流体力学代码开发了神经网络,该代码可模拟仅允许转子旋转(1-DOF)的刚性安装的流体动力学涡轮机的性能。通过以0.2m / s的步长在0.4m / s和2.6m / s之间改变水流的流入速度(U)以及以5%的步长在5%和20%之间的湍流强度(TI)进行改变在2.5%的情况下,每种情况下都获得了一组变量,包括输出轴功率,轴扭矩,单个叶片上的力和拖曳力。获得的数据集用于训练适当大小的前馈(即无再循环)神经网络。获得了四个神经网络,其中每个用于流体力学代码的输出变量。每个神经网络都构成一个闭合形式的显式数学关系(方程式),它针对经过训练的近似因变量生成估计值,当对独立因变量(输入变量)给出特定值时,该估计值将表示当前速度,U和湍流强度, TI。考虑了流体力学代码中感兴趣的四个输出(因变量)变量:轴功率,轴转矩,单个叶片上的力和阻力。因变量实际上是从每次流体动力学代码运行得出的时间平均稳态值。使用背景理论以及流体力学代码生成的数据来验证神经网络的结果。在神经网络输出和流体力学代码数据值之间已实现了小于1%的误差,这表明神经网络和方程式可用来代替流体力学代码来估计时间平均负荷和发电量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号