首页> 外文会议>ASME annual dynamic systems and control conference >AIR COMPRESSION PERFORMANCE IMPROVEMENT VIA TRAJECTORY OPTIMIZATION - EXPERIMENTAL VALIDATION
【24h】

AIR COMPRESSION PERFORMANCE IMPROVEMENT VIA TRAJECTORY OPTIMIZATION - EXPERIMENTAL VALIDATION

机译:通过轨迹优化来改善空气压缩性能-实验验证

获取原文

摘要

In an isothermal compressed air energy storage (CAES) system, it is critical that the high pressure air compressor/expander is both efficient and power dense. The fundamental trade-off between efficiency and power density is due to limitation in heat transfer capacity during the compression/expansion process. In our previous works, optimization of the compression/expansion trajectory has been proposed as a means to mitigate this tradeoff. Analysis and simulations have shown that the use of optimized trajectory can increase power density significantly (2-3 fold) over ad-hoc linear or sinusoidal trajectories without sacrificing efficiency especially for high pressure ratios. This paper presents the first experimental validation of this approach in high pressure (7bar to 200bar) compression. Experiments are performed on an instrumented liquid piston compressor. Correlations for the heat transfer coefficient were obtained empirically from a set of CFD simulations under different conditions. Dynamic programming approach is used to calculate the optimal compression trajectories by minimizing the compression time for a range of desired compression efficiencies. These compression profiles (as function of compression time) are then tracked in a liquid piston air compressor testbed using a combination of feed- forward and feedback control strategy. Compared to ad-hoc constant flow rate trajectories, the optimal trajectories double the power density at 80% efficiency or improve the thermal efficiency by 5% over a range of power densities.
机译:在等温压缩空气储能(CAES)系统中,至关重要的是高压空气压缩机/膨胀机既高效又功率密集。效率和功率密度之间的基本权衡是由于压缩/膨胀过程中传热能力的限制。在我们以前的工作中,提出了优化压缩/扩展轨迹的方法,以减轻这种折衷。分析和模拟表明,使用优化的轨迹可以比特设的线性或正弦轨迹显着提高功率密度(2-3倍),而不会牺牲效率,特别是对于高压比而言。本文介绍了这种方法在高压(7bar至200bar)压缩中的首次实验验证。实验是在仪器化的液体活塞压缩机上进行的。在不同条件下,通过一组CFD模拟获得了传热系数的相关性。动态编程方法用于通过使一系列所需压缩效率的压缩时间最小化来计算最佳压缩轨迹。然后,使用前馈和反馈控制策略的组合在液体活塞式空气压缩机试验台中跟踪这些压缩曲线(作为压缩时间的函数)。与临时恒定流量轨迹相比,最佳轨迹在80%的效率下使功率密度加倍,或者在一定功率密度范围内将热效率提高5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号