首页> 外文会议>American Helicopter Society International annual forum >Blending modern multifunctional materials with traditional structures: An approach for a greener and cleaner future
【24h】

Blending modern multifunctional materials with traditional structures: An approach for a greener and cleaner future

机译:将现代多功能材料与传统结构融为一体:绿色环保的未来之路

获取原文

摘要

The objective of the project is to propose a multifunctional composite material system for next generation rotorcraft's structural components. In particular, a hybrid composite termed as Piezo-Battery Fiber Reinforced Composite (P-BFRC) comprising of piezoelectric and battery fibers is proposed for the rotorcraft blades, which are arranged in an appropriate optimized fashion. The optimized layout will depend on the characteristic of vibrations in the rotor blades and associated structural components. For the fuselage skin panels, use of Battery Fiber Reinforced Composite (BFRC) is proposed. In the rotor blades and the regions where vibration amplitudes are larger, the P-BFRC structure aims to extract electrical energy from the structural vibrations using the piezoelectric panels and store it within the battery panels embedded in the structure itself. In the fuselage, the battery composite skin panels, upon charging from ground station, can serve as power source for operation for several rotorcraft's electrical and electronic components. Importantly, the proposed multifunctional structure is optimized such that the structural characteristics of the existing rotorcraft is not compromised, while simultaneously performing its multiple functions. In other words, introducing such multifunctional material does not increase overall weight nor reduce the structural load carrying capability. In addition, the proposed material system intend to make minimal modifications in the existing system as far as structure and power management systems are concerned, thereby a re-design of entire structural/power system is not necessary. Preliminary analyses have been conducted for to study the energy harvesting and storage characteristics of the multifunctional structure. This work focuses on detailed quantification of energy harvesting and storage capabilities of the proposed multifunctional system through appropriate electro-mechanical models. Altogether, the multifunctional structural system is found to be a promising step towards a cleaner and sustainable aviation.
机译:该项目的目的是为下一代旋翼飞机的结构部件提出多功能复合材料系统。特别地,提出了一种旋翼飞行器叶片的称为压电电池纤维增强复合材料(P-BFRC)的混合复合材料,其由压电纤维和电池纤维组成,它们以适当的优化方式布置。优化的布局将取决于转子叶片和相关结构部件中的振动特性。对于机身蒙皮面板,建议使用电池纤维增强复合材料(BFRC)。在转子叶片和振动幅度较大的区域中,P-BFRC结构旨在利用压电板从结构振动中提取电能,并将其存储在嵌入结构本身的电池板中。在机身中,电池复合蒙皮面板在从地面站充电后,可以用作多个旋翼飞机的电气和电子组件运行的电源。重要的是,对提出的多功能结构进行了优化,以使现有旋翼飞机的结构特性不会受到损害,同时又可以执行其多种功能。换句话说,引入这种多功能材料既不会增加整体重量,也不会降低结构承载能力。另外,就结构和电源管理系统而言,所提出的材料系统打算在现有系统中进行最少的修改,因此不需要对整个结构/电源系统进行重新设计。进行了初步分析,以研究多功能结构的能量收集和存储特性。这项工作的重点是通过适当的机电模型对拟议多功能系统的能量收集和存储功能进行详细的量化。总的来说,多功能结构系统是朝着更清洁,可持续发展的航空迈出的有希望的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号