首页> 外文会议>IEEE Photovoltaic Specialists Conference >Computer modeling of n-ZnO/p-Si single heterojunction bifacial solar Cell
【24h】

Computer modeling of n-ZnO/p-Si single heterojunction bifacial solar Cell

机译:n-ZnO / p-Si单异质结双面太阳能电池的计算机建模

获取原文

摘要

Bifacial solar cell offers the advantage of harvesting the sunlight more effectively and produce extra power from albedo in addition to slightly lower module temperature. Silicon bifacial cells have been studied and commercially produced with doped back surface field (BSF) in conjunction with dielectric passivation. In this study detailed computer modeling of ZnO based bifacial solar cell is performed to critically investigate the potential doped BSF (DBSF)/dielectric passivation and charged passivated BSF (CPBSF). In both structures n-ZnO is employed as the emitter because of its intrinsic n-type conductivity and high transparency. Simulation results show that the bifacial n-ZnO/p-Si solar cells are insensitive to the emitter layer thickness up to 1μm compared to conventional Si solar cell with doped emitter. Furthermore, emitter doping concentration of ZnO in the ZnO/p-Si cell shows stable efficiency up to 1019 cm-3 and drops rapidly for higher doping concentration. The efficiency of the two structures - DBSF and CPBSF with ZnO emitter are similar for base thickness of 140 μm having low carrier lifetime. However, the CPBSF structure exhibits higher efficiency than the DBSF when the carrier lifetime is high. Also, even higher efficiency is obtained with a charge density of 1012 cm2 leading to ~15 mV higher Voc than DBSF counterpart.
机译:双面太阳能电池的优点是可以更有效地收集阳光,并且除了组件温度略低之外,还可以利用反照率产生额外的能量。已经研究了硅双面电池,并已将其与掺杂的背面电场(BSF)结合电介质钝化一起商业化生产。在这项研究中,对基于ZnO的双面太阳能电池进行了详细的计算机建模,以严格研究潜在的掺杂BSF(DBSF)/电介质钝化和带电钝化BSF(CPBSF)。在这两种结构中,由于n-ZnO固有的n型导电性和高透明度,因此它们被用作发射极。仿真结果表明,与传统的带掺杂发射极的Si太阳能电池相比,双面n-ZnO / p-Si太阳能电池对高达1μm的发射极层厚度不敏感。此外,ZnO / p-Si电池中ZnO的发射极掺杂浓度在高达1019 cm-3的范围内显示出稳定的效率,并随着较高的掺杂浓度而迅速下降。两种结构的效率-具有ZnO发射器的DBSF和CPBSF在140μm的基极厚度下具有低载流子寿命是相似的。然而,当载流子寿命高时,CPBSF结构比DBSF具有更高的效率。同样,使用1012 cm2的电荷密度可以获得更高的效率,从而比DBSF对应的Voc高出约15 mV。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号