首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >HULL DEFORMATION EFFECT ON MEMBRANE-TYPE LNG CONTAINMENT SYSTEMS
【24h】

HULL DEFORMATION EFFECT ON MEMBRANE-TYPE LNG CONTAINMENT SYSTEMS

机译:膜式液化天然气围护系统的船体变形效应

获取原文
获取外文期刊封面目录资料

摘要

The objective of this study is to investigate the relationship between the maximum allowable hull deformation, which includes global elongation and local deflection, and the capacity of the CCS in membrane-type LNG vessels. The LNG CCS mainly consists of the primary barrier (e.g. a corrugated membrane for GTT MK HI system and an invar membrane for GTT NO 96 system) and the insulation panel which is attached to the inner hull through mastics or couplers. The excessive hull elongation due to dynamic wave loads may cause fatigue damage of the primary barrier. Thus, the maximum allowable hull elongation (global deformation) can be determined based on the fatigue strength of the primary barrier. On the other hand, the excessive hull deflection due to cargo or ballast water pressure may cause failure of the insulation panel and the mastic. Therefore, the maximum allowable hull deflection (local deformation) in the hull design can be determined based on the strength of the insulation panel and the mastic. In the present paper, the determination of fatigue life vs. strain curves of materials has been summarized for the primary barrier. Fatigue curves based on either structural fatigue tests or standard specimen tests can be applied in fatigue assessment of a primary barrier. As an example, the finite element (FE) analysis has been conducted on the MK HI CCS with the hull structure under pressure loads. Two different load cases including full load and ballast load conditions have been considered to evaluate the structural integrity of the insulation system in numerical simulations. FE results show that the mechanical behavior of the insulation system and the mastic under the maximum allowable hull deflection has been examined based on the yielding strength of each individual component. Finally, the complete procedure to determine the maximum allowable hull elongation and the maximum allowable hull deflection has been developed for meeting the requirements of containment system design for membrane-type LNG carriers.
机译:这项研究的目的是研究最大允许船体变形(包括整体伸长率和局部挠度)与膜型LNG船的CCS能力之间的关系。 LNG CCS主要由主要的屏障(例如用于GTT MK HI系统的波纹膜和用于GTT NO 96系统的殷钢膜)以及通过胶泥或耦合器连接到内壳的隔热板组成。由于动态波浪载荷而导致的船体过度伸长可能会导致主要障碍物的疲劳损坏。因此,可以基于主屏障的疲劳强度来确定最大容许船体伸长率(整体变形)。另一方面,由于货物或压舱水压力引起的船体过度偏转可能导致绝缘板和胶泥失效。因此,可以基于隔热板和胶泥的强度来确定船体设计中的最大允许船体挠度(局部变形)。在本文中,总结了主要障碍的材料疲劳寿命与应变曲线的关系。基于结构疲劳测试或标准样本测试的疲劳曲线可用于主要屏障的疲劳评估。例如,已对具有船体结构的MK HI CCS在压力载荷下进行了有限元(FE)分析。在数值模拟中,已经考虑了两种不同的工况,包括满负荷和压载负荷条件,以评估绝缘系统的结构完整性。有限元结果表明,已经基于每个单独组件的屈服强度检查了绝缘系统和胶泥在最大允许船体挠度下的机械性能。最后,已经开发出确定最大允许船体伸长率和最大允许船体挠度的完整程序,以满足膜式LNG船的围护系统设计要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号