首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >APPLYING CFD FOR IN-LINE STRUCTURE HYDRODYNAMICS IN PIPELINE INSTALLATION ANALYSIS
【24h】

APPLYING CFD FOR IN-LINE STRUCTURE HYDRODYNAMICS IN PIPELINE INSTALLATION ANALYSIS

机译:CFD在管道结构水动力分析中的应用

获取原文

摘要

Over the last decade Heerema Marine Contractors (HMC) has successfully performed multiple installation campaigns of large sized in-line structures (ILS) with Deep Water Construction Vessels (DCV) Aegir and Balder. Nowadays steady increase in size and weight of ILS have made these special operations even more complex. Presence of large sized ILS and accompanying buoyancy modules in the catenary have proven to play a dominant role in pipeline integrity. Originally hydrodynamic force formulations in finite element analysis are solely designated for the pipeline itself. These computations comprehend the application of the Morison equation using constant hydrodynamic coefficients of basic shapes in steady flow. Therefore hydrodynamic forces acting on the ILS, characterized by irregular relative motions of a complex shaped and perforated structure, are highly simplified while playing a dominant role in the analyses. Validity of applying the standard Morison equation is debatable, since large ILS cannot be assumed slender. Nonetheless Morison type formulations can provide reasonable results depending on the accuracy of the hydrodynamic coefficients. Deriving these coefficients for complex shaped structures using industry standards is a highly interpretive process involving an accumulation of assumptions. This approach yields varying coefficients, which are applied conservatively in installation analyses, resulting in an unnecessary reduction of DCV offshore workability. To improve workability of these complex installations, HMC has implemented an ILS specific hydrodynamic profile from Computational Fluid Dynamics (CFD) analysis into the installation analyses. This is effectuated by the development of an enhanced methodology with a dedicated hydrodynamic formulation for large perforated ILS. Dependencies on Keulegan-Carpenter (KC) number and local angle of attack are addressed in this formulation to respectively cover the inertia dominated oscillating motions and complex geometric composition. The applied hydrodynamic formulation is based on work of Molin et al. which showed a good agreement to the CFD analysis performed for this study. Development and application of this methodology is initiated as a first assessment towards more accurate ILS installation analyses. Analysis of a study case shows reductions up to 50% of maximum bending strain in a specific regular wave analysis. From the work presented it is concluded that the industry practice vastly overestimates hydrodynamic forcing on large sized ILS. Complementary research is needed on the topics of oscillations for low (<1.0) KC number, effects of relative fluid velocity and finally the implementation of irregular waves.
机译:在过去的十年中,Heerema海上承包商(HMC)成功地与深水施工船(DCV)的Aegir和Balder进行了大型直列结构(ILS)的多次安装活动。如今,ILS尺寸和重量的稳定增长使这些特殊操作变得更加复杂。悬链线中大型ILS和随附的浮力模块的存在已被证明在管道完整性中起着主导作用。最初将有限元分析中的流体动力公式仅指定给管道本身。这些计算包括在恒定流中使用基本形状的恒定流体动力系数的Morison方程的应用。因此,以复杂形状和多孔结构的不规则相对运动为特征的作用在ILS上的流体动力会大大简化,同时在分析中起主要作用。由于不能假定大的ILS是苗条的,因此应用标准Morison方程的有效性值得商bat。尽管如此,根据流体动力学系数的准确性,莫里森型配方仍可提供合理的结果。使用行业标准推导复杂形状结构的这些系数是一个高度解释性的过程,其中涉及各种假设。这种方法会产生不同的系数,这些系数会在安装分析中保守地应用,从而导致DCV海上作业性的不必要降低。为了提高这些复杂设备的可操作性,HMC实施了从计算流体动力学(CFD)分析到设备分析的ILS特定流体动力学曲线。这是通过开发一种改进的方法来实现的,该方法具有适用于大型带孔ILS的专用流体力学配方。在此公式中解决了对Keulegan-Carpenter(KC)数和局部攻角的依赖性,以分别涵盖惯性主导的振荡运动和复杂的几何组成。所应用的流体动力公式是基于Molin等人的工作。与这项研究的CFD分析显示出很好的一致性。启动此方法的开发和应用是对更准确的ILS安装分析的首次评估。对研究案例的分析显示,在特定的规则波分析中,最大弯曲应变降低了50%。从提出的工作可以得出结论,行业实践大大高估了大型ILS上的流体动力强迫。对于低(<1.0)KC数的振荡,相对流体速度的影响以及不规则波的实现,还需要进行补充研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号