首页> 外文会议>IAEE international conference;International Association for Energy Economics >Decentralized Generation and Storage Technologies in Future Energy Systems of Swiss Communities
【24h】

Decentralized Generation and Storage Technologies in Future Energy Systems of Swiss Communities

机译:瑞士社区未来能源系统中的分布式发电和存储技术

获取原文

摘要

OverviewPower systems worldwide have traditionally been structured according to a centralized generation and distributionscheme. However, the development and uptake of decentralized generation and storage technologies (DGSTs) israpidly evolving and this motivates the need for a reassessment of the role of DGSTs in the future energy systemsplanning of our cities.Energy system and policy planners face decision-making under uncertainty, including future technologydevelopment, resource availability, and cost uncertainties. However, scenario analysis using a long-term energysystems model can aid in the decision-making and planning process. In this study, a model is developed to examinethe role of DGSTs in the future energy systems of Swiss rural and urban agglomerations.Using a cost optimization approach, the model determines the energy capacity investment and operation required tosatisfy electricity and heat demand across major agglomeration sectors until 2050. A number of scenarios aredeveloped to analyse various uncertainties within the system. Scenarios introduce different technologies, carbonmitigation policies, and energy carrier and technology price sensitivities, and cost-optimal solutions are compared toa baseline scenario.Both a rural and urban community are modelled, represented by different energy systems and scales. The modelscan serve as valuable inputs for local policymakers.MethodsThe cost optimization model for this case study is developed using the MARKAL/TIMES framework (IEA-ETSAP,2011). TIMES is a bottom-up, energy systems, cost optimization modelling framework maintained by theInternational Energy Agency. It enables the development of perfect-foresight models which provide details onoptimal capacity allocation and dispatch patterns for given scenarios. The developed model captures the entireenergy system and conversion chain of the agglomeration, including residential, services, industrial, and agriculturalsectors. End-use energy demand includes building space heat, domestic hot water, process heat, and electricity.TIMES has been used to develop several national and international scale models (Goldstein & Tosato, 2008;Ramachandran & Turton, 2013); however, in this study, a lower-level model is developed in which individualdecentralized technologies are modelled on an aggregated building level in a community. Time slices are alsointroduced with a relatively high time resolution, with average days represented on an hourly scale for each season.Baseline scenarios reflect a centralized generation scheme, while alternative technology scenarios introducedecentralized and storage technology options. Decentralized heat and electricity generation technologies includesmall hydro (rural case only), gas micro-CHP (urban case only), photovoltaics, solar thermal heaters, and boilers,while storage options include a hydro reservoir (rural case), batteries, and heat storages. The impacts of carbonmitigation policies on capacity planning are also evaluated, including different carbon tax and feed-in tariffscenarios. Technology and energy carrier price sensitivities are measured as well.ResultsDGSTs enter into the cost optimal solution in both the rural and urban community studies. The results presentedbelow focus on the rural community study as an example.Small hydro and photovoltaics enable the rural community to become largely self-sufficient with over 80%reductions in national grid electricity usage by 2050 compared to the baseline scenario in one case. Storage isessential for full utilisation of the local hydro resource, however. To illustrate, Figure 1 below compares theelectricity supply to the community in a decentralized technology scenario with and without storage options.The deployment of storage results in cost savings through transmission network upgrade deferrals, and prompts a30% increase in photovoltaic installations as well. The overall decrease in electricity demand observed in Figure 1 isdue to the replacement of electric heaters in 2010 with higher efficiency heat pumps over time.The introduction of DGSTs results in a significant reduction in total discounted system costs for the ruralcommunity. The system cost reduction is approximately 8.5% compared to the baseline scenario when decentralizedtechnologies are introduced without storage options. With the introduction of storage, the system cost reduction is14%.Investment decisions in small hydro are robust against hydro power technology cost variations, while heatingtechnology investment decisions are found to be sensitive to oil and grid electricity prices.DGSTs are found to play an important role in the future energy system of the urban case study as well. PV and gasmicro-CHP technologies, in particular, enable a 60% reduction in national grid electricity imports by 2050 comparedto the baseline scenario. Investment decisions in these technologies are not highly sensitive to cost variations.Carbon pricing policies are found to be effective in mitigating local fossil fuel emissions in both the rural and urbancase studies.ConclusionsDGSTs play a significant role in the cost optimal, future energy systems of the communities considered. Smallhydro with storage (in the rural case), gas micro-CHP (in the urban case), and photovoltaics (in both) play adominant role in optimal capacity planning, even under uncertain cost conditions. The deployment of DGSTs resultsin increased self-sufficiency for the communities and enables electricity network deferrals. It must be borne in mind,however, that these results are specific to the communities considered; results will differ depending on site-specificconditions, including the existing energy system, local resource availability, and technology access.Further cases are being developed in order to identify the broader conditions under which DGST uptake isfavourable in Switzerland.
机译:概述 传统上,世界范围内的电源系统是根据集中式发电和配电来构造的 方案。但是,去中心化发电和存储技术(DGST)的发展和采用是 快速发展,这激发了重新评估DGST在未来能源系统中的作用的需求 我们的城市规划。 能源系统和政策计划者面临不确定性(包括未来技术)的决策 开发,资源可用性和成本不确定性。但是,使用长期能源进行情景分析 系统模型可以帮助决策和计划过程。在这项研究中,开发了一个模型来检验 DGST在瑞士农村和城市群的未来能源系统中的作用。 该模型使用成本优化方法来确定所需的能源投资和运营 到2050年,满足主要集聚部门的电力和热需求。 开发用于分析系统中的各种不确定性。方案介绍了不同的技术,碳 比较了缓解政策,能源载体和技术的价格敏感性以及成本最优的解决方案, 基准情景。 以不同的能源系统和规模代表了农村和城市社区。型号 可以作为地方政策制定者的宝贵投入。 方法 本案例研究的成本优化模型是使用MARKAL / TIMES框架(IEA-ETSAP, 2011)。 TIMES是自下而上的能源系统,成本优化建模框架,由 国际能源署。它可以开发完善的预测模型,其中提供了有关以下方面的详细信息: 给定方案的最佳容量分配和调度模式。开发的模型可以捕获整个模型 集聚的能源系统和转化链,包括住宅,服务业,工业和农业 部门。最终用途能源需求包括建筑空间供热,生活热水,过程供热和电力。 TIMES已被用来开发一些国家和国际规模的模型(Goldstein&Tosato,2008年; Ramachandran&Turton,2013年);但是,在这项研究中,开发了一个较低级别的模型,其中个体 分散技术是在社区的综合建筑级别上建模的。时间片也是 引入的时间分辨率较高,每个季节的平均天数以小时为单位。 基线方案反映了集中式发电方案,而替代技术方案引入了 分散和存储技术选择。分散式热力发电技术包括 小型水力发电(仅适用于农村情况),微型燃气热电联产(仅适用于城市情况),光伏发电,太阳能热水器和锅炉, 储存选项包括蓄水池(农村箱),电池和蓄热器。碳的影响 还评估了容量规划的缓解政策,包括不同的碳税和上网电价 场景。还测量了技术和能源载体的价格敏感性。 结果 DGST在农村和城市社区研究中都进入了成本最优解决方案。呈现的结果 下面以农村社区研究为例。 小型水力发电和光伏发电使农村社区基本能够自给自足,超过80% 与基准情景相比,到2050年,全国电网用电量减少了1例。储存是 但是,对于充分利用当地的水力资源至关重要。为了说明这一点,下面的图1比较了 在有或没有存储选项的分散技术场景中,为社区供电。 通过传输网络升级延迟,存储的部署可以节省成本,并提示 光伏装置也增加了30%。图1中观察到的总电力需求下降为 由于随着时间的流逝,高效能的热泵在2010年取代了电加热器。 DGST的引入大大降低了农村地区的折扣系统总成本 社区。与分散时的基准方案相比,系统成本降低了约8.5% 引入了不带存储选项的技术。随着存储的引入,系统成本降低了 14%。 小型水力发电的投资决策对于水力发电技术成本的变化是有力的,而供热 发现技术投资决策对石油和电网电价敏感。 发现DGST在城市案例研究的未来能源系统中也起着重要作用。光伏和天然气 微型热电联产技术,特别是,到2050年,可使国家电网电力进口减少60% 基线情况。这些技术的投资决策对成本变化并不十分敏感。 发现碳定价政策可有效减少农村和城市的当地化石燃料排放 实例探究。 结论 DGST在所考虑的社区的最佳成本,未来能源系统中发挥着重要作用。小的 带有存储的水力发电(在农村情况下),天然气微型热电联产(在城市情况下)和光伏发电(在两种情况下) 即使在不确定的成本条件下,在最佳产能计划中也起着主导作用。 DGST的部署结果 增强了社区的自给自足,并推迟了电网建设。必须牢记这一点, 但是,这些结果是特定于所考虑的社区的;结果将因具体地点而异 条件,包括现有的能源系统,本地资源可用性和技术获取。 正在开发更多案例,以确定DGST吸收的更广泛条件 在瑞士有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号