首页> 外文会议>IAEE international conference;International Association for Energy Economics >MODELLING AND FORECASTING RIG RATES ON THE NORWEGIAN CONTINENTAL SHELF
【24h】

MODELLING AND FORECASTING RIG RATES ON THE NORWEGIAN CONTINENTAL SHELF

机译:挪威大陆架的建模和预测钻速

获取原文

摘要

OverviewKnowledge about rig markets is crucial for understanding the global oil market. In this paper we first develop a simple bargaining model for rig markets. Then we examine empirically the most important drivers for rig rate formation of floaters operating at the Norwegian Continental Shelf in the period 1991q4 to 2013q4. We use reduced form time series models with two equations and report conditional point and bootstrapped interval forecasts for rig rates and capacity utilization for the period 2016q1 to 2018q4. We then consider two alternative simulations to examine how the oil price and remaining petroleum reserves influence rig rate formation of floaters. In the first alternative simulation we assume that the real oil price increases (in 2010 prices) from about 45 USD per barrel in 2016q1 to 80 USD in 2018q4, whereas the oil price in the reference case increases from about 30 USD to about 44 USD in real terms According to our results, the rig rates will be about 30 percent higher in 2018q4 with the higher oil price. In the second alternative simulation we explore the effects of opening the Barents Sea and areas around Jan Mayen for petroleum activity. This contributes to dampening the fall in the rig rates and capacity utilization over the last part of the forecast period.MethodsReduced form econometric models for quarterly time series with two endogenous variables are estimated. The two response variables are the mean of log rig rates and the capacity utilization rate of the North Atlantic area. The equation for the former variable is non-linear in one of the parameters, stemming from the lag specification of the oil price. Consistent estimates of the unknown parameters of the model may be obtained using single equation estimation methods, but, in view of a gain in asymptotic efficiency, we employ multivariate non-linear least squares, i.e., both equations are estimated simultaneously.Our reference model is used for conditional forecasting. Besides a reference case, we consider two alternative simulations, which, respectively, deviate from the reference case with respect to (i) the assumptions with respect to oil prices in real terms and (ii) the assumptions with respect to petroleum reserves. To assess forecast uncertainty stemming from the errors of the model, bootstrapping, utilizing within-sample residuals, is utilized. The two endogenous variables are forecasted for the period 2016q1-2018q4.ResultsThe log of the smoothed oil price, where the smoothing parameter is obtained as the estimate of one of the parameters, only enters the equation of the mean of log rig rates. The estimate of the smoothing parameter suggests that the expectations about future oil prices are updated quite fast to new oil price observations. For example, the oil price three years ago weighs roughly one quarter of the present oil price in the Koyck lag specification.Also a lagged real interest rate impacts the rig rate positively. A one percentage point increase in the lagged real interest rate leads to a 0.078 increase in the log rig rate. In the theory model we found that the real interest rate has an ambiguous effect on the rig rate. The reason is that the real interest rate increases the capital cost of oil companies, making them less willing to pay for rigs, and increases the rig contractors’ capital costs and hence the cost of supplying rigs. The positive estimate suggests that the rig contractor capital cost effect dominates.The lagged (antilog transformed) capacity utilization rate is yet another variable that has a positive impact on the rigrate. This is as expected, because higher capacity utilization increases both the bargaining power of the rigcontractors and the cost of supplying rigs (e.g., because of maintenance requirements). The same is true for thelagged lead time variable. We observe that a longer lead time suggests more pressure in the rig market, and thus hassimilar effects on the rig rate as capacity utilization.We also find a significant positive effect of the lagged stock of remaining petroleum reserves (log-transformed).Intuitively, more available resources imply larger profit potential for the oil companies, and hence increased rigdemand.The most significant variable in the reduced form equation of the logit transformed capacity utilization is the laggedleft-hand side variable, which enters with an estimate of 0.81. Thus, there is a high degree of persistence. Anothersignificant variable is the (log) maximal drilling depth, depth, which enters positively and with an estimate that is notfar from unity. The reference model seems reasonably well specified.According to the reference simulation, the rig rate is predicted to fall from the beginning of 2016 to the end of 2018.The rig rate is predicted to fall by 26 per cent. The capacity utilization is predicted to increase by about 7percentagepoints. A major factor behind this drop in the rig rate is the substantial fall in the oil price (in constant prices), even ifthis fall is somewhat dampened since we use a smoothed oil price as an explanatory variable. The estimated capacityutilization equation is dominated by an autoregressive slope coefficient somewhat below unity and a positiveseasonal effect related to the second quarter. This former term contributes to a reduction in the capacity utilizationduring the forecast period, whereas the latter works in the opposite direction When forecasting with the referencemodel we represent forecast uncertainty with 50% forecast intervals. The forecast intervals for the rig rate are ratherwide. In 2018q4, the last quarter that we consider, the calculated forecast interval of the rig rate starts at 199thousand USD (in 2010 prices) per day and ends at 266 thousand. The corresponding values for the capacityutilization are 0.74 and 0.94.In the Higher oil price simulation we assume another (higher) path of the oil price by letting it grow from about45USD per barrel (in constant 2010 prices) in 2016q1 to 80 USD in the ultimate forecast period 2018q4.Accordingly, the rig rate is about 30 per cent higher in 2018q4 in this alternative simulation than in the referencesimulation In the Larger reserves simulation we are looking at the implications on the NCS rig market followingopening for petroleum activity in the Barents Sea and areas around Jan Mayen. The associated increase in petroleumreserves (measured in 2018q4) is 12.3 percent, relative to the reference simulation. In this simulation the real rig rateis about 8 per cent higher in 2018q4 than in the reference case. The capacity utilization is about 5 percent pointhigher in 2018q4in this alternative simulation than in the reference simulation, since an increase in the petroleumreserves gives positive impulse to the capacity utilization.ConclusionsIn this paper we first presented a simple theoretical model to sharpen our understanding of rig markets and helpidentify the most important drivers for rig rate formation. Then we estimated their effects in the NCS rig market forfloaters, using a reduced form two-equation econometric model for rig rates and a proxy for capacity utilization overthe period 1991q4 to 2013q4. Last, we presented point and interval forecasts for rig rates on the NCS and capacityutilization in the North Atlantic area in a reference simulation and point forecasts for two alternative simulations.The first alternative simulation featured a relatively higher real oil price path, and the second involved opening forpetroleum activity in new areas.Based on the assumption of adaptive oil price expectations according to the Koyck lag structure, we found thatexpectations about future oil prices are updated quite fast to new oil price observations. In particular, higher oilprices stimulate petroleum development projects. The rig rates then increase because rig operators capture a share ofthe profitability from petroleum activity. On the other hand, we were not able to find a significant positive effect ofreal oil prices on capacity utilization. We found some evidence that increased remaining petroleum reservesstimulate rig rates and capacity utilization. Lastly, we found significant effects of two rig classification variables andmaximum drilling depth. These are again roughly in line with the theory.In the second alternative simulation we analyzed effects on the NCS rig market following opening for petroleumactivity in the Barents Sea and around Jan Mayen. As expected, this induced higher rig rates and capacity utilization,as compared with the reference simulation. Rig rates decline over time in this simulation too, because the sharpdecline in the oil price dominates the effect from increased petroleum reserves.
机译:概述 有关钻机市场的知识对于理解全球石油市场至关重要。在本文中,我们首先为钻机市场开发了一个简单的讨价还价模型。然后,我们从经验上考察了1991年第4季度至2013年第4季度在挪威大陆架上作业的浮选机的船速形成最重要的驱动因素。我们使用具有两个方程式的简化形式的时间序列模型,并报告条件点和自举间隔的预测,以预测2016年第一季度至2018年第四季度的钻机速率和产能利用率。然后,我们考虑两个替代模拟,以检验油价和剩余石油储量如何影响浮子的钻机速率形成。在第一个替代模拟中,我们假设实际石油价格(按2010年价格计算)从2016年第一季度的每桶约45美元增加到2018年第四季度的80美元,而参考案例中的石油价格从约30美元增加到约44美元。实际条件根据我们的结果,随着油价上涨,2018年第四季度钻机率将提高约30%。在第二个替代模拟中,我们探讨了开放Barents海和Jan Mayen周围地区对石油活动的影响。这有助于在预测期的后半段抑制钻机费率和产能利用率的下降。 方法 估计具有两个内生变量的季度时间序列的简化形式计量经济学模型。这两个响应变量是测井钻机速率的平均值和北大西洋地区的产能利用率。前一个变量的方程在一个参数中是非线性的,源于石油价格的滞后指标。可以使用单方程估计方法获得模型未知参数的一致估计,但是鉴于渐近效率的提高,我们采用多元非线性最小二乘,即,同时估计了两个方程。 我们的参考模型用于条件预测。除参考案例外,我们还考虑了两种替代模拟,它们分别与(i)实际以石油价格为基础的假设和(ii)以石油储量为基础的假设背离了参考案例。为了评估由模型误差引起的预测不确定性,利用了利用样本内残差的自举法。预测了2016q1-2018q4期间的两个内生变量。 结果 获得平滑参数作为参数之一的估计值的平滑石油价格的对数,仅输入对数钻机费率平均值的方程。平滑参数的估计表明,对未来石油价格的预期会很快更新为新的石油价格观察值。例如,在科伊克滞后指标中,三年前的石油价格大约是当前石油价格的四分之一。 同时,实际利率的滞后也会对钻机利率产生积极的影响。滞后实际利率提高1个百分点,对数利率提高0.078。在理论模型中,我们发现实际利率对钻机利率有模糊的影响。原因是实际利率增加了石油公司的资本成本,使他们不太愿意支付钻机费用,并增加了钻机承包商的资本成本,从而增加了钻机的供应成本。实证估计表明,钻机承包商的资本成本效应占主导地位。 滞后的(对数转换)产能利用率是另一个对钻机产生积极影响的变量 速度。这是预料之中的,因为更高的产能利用率提高了钻机的讨价还价能力 承包商和钻机的供应成本(例如,由于维护要求)。对于 滞后的提前期变量。我们观察到,交货时间越长,表明钻机市场的压力越大,因此 对钻机速率的影响与产能利用率类似。 我们还发现剩余石油储备的滞后库存(对数转换)具有显着的积极作用。 直观地讲,更多的可用资源意味着石油公司有更大的获利潜力,因此增加了钻机数量 要求。 对数转换容量利用率的简化形式方程中最重要的变量是滞后的 左侧变量,其估计值为0.81。因此,存在高度的持久性。其他 显着变量是(对数)最大钻孔深度,深度,该值以正数输入且估计值不是 远非统一。参考模型似乎合理指定。 根据参考模拟,钻机速度预计将从2016年初下降到2018年底。 钻机率预计将下降26%。预计产能利用率将增加约7% 点。钻机价格下降的一个主要因素是石油价格的大幅下降(以不变价格计算),即使 由于我们使用平滑的石油价格作为解释变量,因此今年的下跌受到了一定程度的抑制。估计容量 利用率方程由略低于1的自回归斜率系数和正数主导 与第二季度有关的季节性影响。前一个术语会导致容量利用率下降 在预测期内,而后者在相反的方向上起作用 在模型中,我们以50%的预测间隔表示预测不确定性。钻机速率的预测间隔相当 宽的。在我们考虑的最后一个季度2018q4,计算的钻机速率预测间隔从199开始 每天(以2010年价格为准)为1000美元,最终以26.6万美元结束。容量的相应值 利用率分别为0.74和0.94。 在较高的油价模拟中,我们通过让油价从大约 2016年第一季度每桶45美元(按2010年不变价格)至2018年第四季度最终预测期为每桶80美元。 因此,在该替代模拟中,2018年第四季度的钻机速率比参考模型高约30% 模拟在较大储量模拟中,我们正在研究以下内容对NCS钻机市场的影响 在巴伦支海及扬马延(Jan Mayen)附近地区开展石油活动。与此相关的石油增加 相对于参考模拟,储量(在2018年第四季度测得)为12.3%。在此模拟中,实际钻机速率 与参考案例相比,2018年第四季度约高8%。产能利用率约为5% 由于石油的增加,该替代模拟中的2018q4高于参考模拟 储备对产能利用率产生了积极的推动作用。 结论 在本文中,我们首先提出了一个简单的理论模型,以加深我们对钻机市场的了解并提供帮助 确定钻机速率形成的最重要驱动因素。然后,我们估算了它们在NCS钻机市场上的影响, 浮法,使用简化形式的两方程计量经济模型获得钻机价格,并使用代理来计算产能 1991年第4季度至2013年第4季度。最后,我们介绍了NCS和产能上钻机速率的点和间隔预测 参考模拟和两个替代模拟的点预报中对北大西洋地区的利用情况。 第一个替代模拟的特征是相对较高的实际石油价格路径,第二个模拟涉及开放 新领域的石油活动。 基于根据科伊克滞后结构得出的自适应油价预期假设,我们发现 对未来石油价格的期望很快就根据新的石油价格观察进行了更新。特别是高级油 价格刺激了石油开发项目。然后,钻机费率会增加,因为钻机操作员会从中获得一定份额。 石油活动的利润率。另一方面,我们无法发现 实际石油价格对产能利用率的影响。我们发现一些证据表明剩余石油储量增加了 刺激钻机速率和产能利用率。最后,我们发现了两个钻机分类变量的显着影响, 最大钻孔深度。这些再次与理论大致相符。 在第二个替代模拟中,我们分析了石油开放后对NCS钻机市场的影响 巴伦支海和扬马延(Jan Mayen)附近的活动。不出所料,这导致更高的钻机速率和产能利用率, 与参考模拟相比。在此模拟中,钻机速率也会随着时间而下降,因为 石油价格下降主导了石油储备增加的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号