首页> 外文会议>IAEE international conference;International Association for Energy Economics >EXTRAPOLATED TRENDS VERSUS ENERGY MODEL PROJECTIONS – GLOBAL DISTRIBUTION DYNAMICS DERIVED FROM REGIONAL KAYA DECOMPOSITION
【24h】

EXTRAPOLATED TRENDS VERSUS ENERGY MODEL PROJECTIONS – GLOBAL DISTRIBUTION DYNAMICS DERIVED FROM REGIONAL KAYA DECOMPOSITION

机译:趋势趋势对能量模型的投影-区域KAYA分解得出的全球分布动力学

获取原文

摘要

OverviewThe development of economic growth, energy demand, and environmental quality are key inputs to design policyoptions for a global sustainable development. Future scenarios produced by energy system models and integratedassessment models can provide useful insights into future pathways but they cannot be validated. We apply themethod of distribution dynamics to historical data as an alternative projection method and as a way to analyze andtest scenario output produced for the Global Energy Assessment Report, GEA (2012), the World Energy Outlook2015, as well as for the Global Energy and Climate Outlook, Labat et al. (2015). More specifically, we look into theevolution of cross-country/regional patterns appearing in the factors of the Kaya decomposition.The paper is structured in the following way. First, we briefly review the method of distribution dynamics and weshow how the distribution functions we have selected are related to Kaya’s identity. The main section thancompares the trend analysis of historical data with the projected patterns for the global distributions of the Kayafactors. To this end, an ergodic distribution is determined to estimate the behavior in the far future. A summaryand outlook concludes the paper.MethodsWe generalize the Kaya decomposition of the global CO_2 emissions to account for the regional distribution of thedrivers by representing the emissions as CO_2(t) = ƩiCO_(2,i)(t) = P0P(t) ×Ʃie_i(t) × f_i(t)×g_i(t) × p_i(t)where for each region I we have carbon dioxide emissions per final energy e_i , final energy per GDP f_i , GDPper population g_i , and p_i being the share of regional population in world population POP . Followingideas from density estimation theory, this expression is reinterpreted as the population-weighted expectation value of a trivariate joint probability function f CO_2(t) =P0P(t)∫dxdydzxyzf(x,y,z;t)which is given by a kernel density estimate asf(x,y,z)=1/h_xh_yh_zƩi_(pi)K(x-e_i/h_x)K(y-f_i/h_y)K(z-g_i/h_z)Here, K is the so called kernel function, which is assumed to be normalized with vanishing first moment. For asmooth estimation of the unknown distribution function f of the sampled data, a proper choice of the bandwidthparameter h_x ,h_y , h_z is essential, see Silverman (1986). To this end, we adapt data-driven bandwidth selectionrules given in the literature to our situation, cf. Goerlich Gisbert (2003) and Wang, Wang (2007). In principle, theprobability function f can by projected into the future by a Markov process, where the transition function ismodelled from historical data. In this way, trends in the evolution of the distribution function are propogated toobtain a prediction for the individual distribution of GDP per capita etc. and the joint function f. In contrast totraditional methods, where only mean values and/or moments of the distribution are extrapolated, such anapproach estimates the distribution function as a whole. In particular, the propagation into the far future can serveas a means to study if regional disparities converge or not. These distributions can be compared with kernel densityestimates for regional data generated by baseline scenarios in energy system models. In a first step, we implementthis approach for the univariate regional distribution of carbon intensity, final energy intensity and per capita GDP.Having these quantities at our disposal, we propagate the trivariate joint distribution function, which is a difficulttask in itself. We use a copula representation of distribution functions to connect the trivariate distribution to its univariate marginal distributions and to bivariate distribution functions, see Trivedi (2007). As a result, we obtain aprediction for carbon emissions extrapolating trends from a time period given by historical data.ResultsThe added value of our paper is three-fold: first, we analyze projected energy transformation pathways focusing onthe development of regional disparities in the world. This adds to the discussion of WEO, GEA and GECO results,because these studies look more into global results or that of specific regions. Second, we suggest a method that canbe used to analyze the development of projected regional disparities in contrast to what has been observed inhistory. This can support testing models which are per-se impossible to validate ex-ante (c. f. Schwanitz (2013)).Third, we contribute to the growing literature on distribution dynamics by widening its application beyond thestudy of income or final intensity distributions. We also propose a new bandwidth selection rule for weightedsamples.ConclusionsWe find that the projected future economic development of baseline scenarios is biased towards convergencewhereas energy demand patterns across world regions unfold smoothly from historical data and are close to thealternative projection that we derive from the ergodic distribution. The development of carbon intensity of finalenergy is strongly prescribed by regional frameworks. This global distribution seems unlikely to converge.
机译:概述 经济增长,能源需求和环境质量的发展是设计政策的关键要素 全球可持续发展的选择。能源系统模型和综合产生的未来情景 评估模型可以提供有关未来途径的有用见解,但无法进行验证。我们应用 动态分布到历史数据的方法,作为一种替代的投影方法,以及一种分析和分析的方法 为全球能源评估报告,GEA(2012年),《世界能源展望》提供的测试场景输出 Labat等人,《 2015年全球能源与气候展望》。 (2015)。更具体地说,我们调查 Kaya分解的因素中出现了越野/区域模式的演变。 本文的结构如下。首先,我们简要回顾一下分布动力学的方法,然后 展示我们选择的分配功能与Kaya的身份之间的关系。主要部分 将历史数据的趋势分析与Kaya的全球分布的预测模式进行比较 因素。为此,确定遍历分布以估计在不久的将来的行为。总结 展望总结了这篇论文。 方法 我们对全球CO_2排放的Kaya分解进行了概括,以说明该地区的区域分布。 通过将排放表示为 CO_2(t)= ƩiCO_(2,i)(t)= P0P(t)×Ʃie_i(t)×f_i(t)×g_i(t)×p_i(t) 对于每个区域,我都有每个最终能量e_i的二氧化碳排放量,每个GDP的最终能量f_i,GDP 每人口g_i,p_i是区域人口在世界人口POP中的份额。下列的 根据密度估计理论的想法,此表达式被重新解释为三元联合概率函数f的人口加权期望值 CO_2(t)= P0P(t)∫dxdydzxyzf(x,y,z; t) 由内核密度估计为 f(x,y,z)= 1 / h_xh_yh_zƩi_(pi)K(x-e_i / h_x)K(y-f_i / h_y)K(z-g_i / h_z) 在这里,K是所谓的核函数,假定它随着消失的第一矩而被归一化。为一个 平滑采样数据的未知分布函数f,带宽的适当选择的估计 参数h_x,h_y,h_z是必不可少的,请参见Silverman(1986)。为此,我们调整了数据驱动的带宽选择 文献中针对我们的情况给出的规则,请参见。 Goerlich Gisbert(2003)和Wang,Wang(2007)。原则上, 概率函数f可以通过马尔可夫过程投影到未来,其中转移函数为 根据历史数据建模。这样,就可以将分布函数演化的趋势传播给 获得人均GDP等的个体分布以及联合函数f的预测。与之相反 传统方法,其中仅推断分布的均值和/或矩,例如 该方法估计整个分布函数。尤其是,可以传播到遥远的未来 作为研究区域差异是否趋同的一种手段。可以将这些分布与内核密度进行比较 能源系统模型中基准情景所产生的区域数据的估计值。第一步,我们实施 这种方法用于碳强度,最终能源强度和人均GDP的单变量区域分布。 拥有这些数量供我们使用时,我们传播了三变量联合分布函数,这很困难 本身的任务。我们使用分布函数的copula表示将三变量分布与其单变量边际分布和双变量分布函数联系起来,请参见Trivedi(2007)。结果,我们获得了 根据历史数据给出的时间段预测碳排放推断趋势。 结果 本文的附加价值是三方面的:首先,我们分析了预测的能量转化途径,重点是 世界区域差距的发展。这增加了对WEO,GEA和GECO结果的讨论, 因为这些研究更多地关注全球结果或特定地区的结果。其次,我们建议一种方法 用来分析预计的地区差异的发展,这与在2006年观察到的情况形成了鲜明的对比。 历史。这可以支持本质上无法事前验证的测试模型(参见Schwanitz(2013))。 第三,我们将其应用范围扩展到了除 研究收入或最终强度分布。我们还为加权提出了新的带宽选择规则 样品。 结论 我们发现基准情景的预期未来经济发展倾向于趋同 而世界范围内的能源需求模式从历史数据中可以平稳地展现出来,并且接近于 我们从遍历分布中得出的替代投影。最终碳强度的发展 能源是由区域框架强烈规定的。这种全球分布似乎不太可能收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号