首页> 外文会议>Annual conference on Neural Information Processing Systems >Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes
【24h】

Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes

机译:具有稀疏读写的扩展内存增强神经网络

获取原文

摘要

Neural networks augmented with external memory have the ability to learn algorithmic solutions to complex tasks. These models appear promising for applications such as language modeling and machine translation. However, they scale poorly in both space and time as the amount of memory grows - limiting their applicability to real-world domains. Here, we present an end-to-end differentiable memory access scheme, which we call Sparse Access Memory (SAM), that retains the representational power of the original approaches whilst training efficiently with very large memories. We show that SAM achieves asymptotic lower bounds in space and time complexity, and find that an implementation runs 1,000× faster and with 3,000× less physical memory than non-sparse models. SAM learns with comparable data efficiency to existing models on a range of synthetic tasks and one-shot Omniglot character recognition, and can scale to tasks requiring 100,000s of time steps and memories. As well, we show how our approach can be adapted for models that maintain temporal associations between memories, as with the recently introduced Differentiable Neural Computer.
机译:带有外部存储器的神经网络具有学习复杂任务的算法解决方案的能力。这些模型对于诸如语言建模和机器翻译之类的应用看来很有希望。但是,随着内存量的增长,它们在空间和时间上的伸缩性都很差-限制了它们在现实世界中的适用性。在这里,我们提出了一种端到端的差异存储访问方案,我们将其称为稀疏访问存储器(SAM),该方案保留了原始方法的表示能力,同时可以通过非常大的存储器有效地进行训练。我们展示了SAM在空间和时间复杂度上实现了渐近下界,并且发现与非稀疏模型相比,实现的运行速度快了1,000倍,物理内存减少了3,000倍。 SAM在一系列综合任务和一键式Omniglot字符识别方面的学习效率与现有模型相当,并且可以扩展到需要100,000个时间步长和内存的任务。同样,我们展示了如何将我们的方法应用于保持记忆之间时间关联的模型,就像最近推出的微分神经计算机一样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号