首页> 外文会议>Conference on mechanical vibration and noise;ASME international design engineering technical conferences and computers and information in engineering conference >A NEW SPATIAL AND TEMPORAL INCREMENTAL HARMONIC BALANCE METHOD FOR OBTAINING STEADY-STATE RESPONSES OF A ONE-DIMENSIONAL CONTINUOUS SYSTEM
【24h】

A NEW SPATIAL AND TEMPORAL INCREMENTAL HARMONIC BALANCE METHOD FOR OBTAINING STEADY-STATE RESPONSES OF A ONE-DIMENSIONAL CONTINUOUS SYSTEM

机译:一维连续系统稳态响应的时空增量谐波平衡新方法

获取原文

摘要

A new spatial and temporal incremental harmonic balanced (STIHB) method is developed for obtaining steady-state responses of a one-dimensional continuous system. In the STIHB method, Galerkin procedure for a governing partial differential equation (PDE) in the spatial coordinate to obtain a set of ordinary differential equations (ODEs) and the harmonic balance procedure for the set of ODEs in the temporal coordinate to obtain the harmonic balanced residual are combined to be Galerkin procedures for the PDE in the spatial and temporal coordinates to simultaneously obtain the spatial and temporal harmonic balanced residual, and integrations in Galerkin procedures are replaced by the fast discrete sine transform (DST) or fast discrete cosine transform (DCT) in the spatial coordinate and the fast Fouriour transform (FFT) in the temporal coordinate, which is referred to as a DST-FFT or DCT-FFT procedure. The harmonic balanced residual for an arbitrary second-order PDE can be automatically and efficiently obtained by a computer program when the expression of the PDE is given, where numbers of basis functions in the spatial and temporal coordinates can be arbitrarily selected and no more extra derivations are needed. There are two versions of the STIHB method. In the simple version, the DST-FFT or DCT-FFT procedure to calculate the harmonic balanced residual and Broyden 's method that is a quasi-Newton method are combined to find solutions that make the residual vanish, which can be used to construct steady-state solutions of the PDE. In the complex version, the exact Jacobian matrix is derived and used in Newton-Raphson method to achieve faster convergence. While its derivation is complex, the exact Jacobian matrix for the arbitrary PDE can be automatically and efficiently obtained by following a calculation routine when the linearized expression of the PDE is given, and it can be easily implemented by a computer program. The exact Jacobian matrix can also be used to study stability of steady-state responses, where no more extra derivations are needed. The STIHB method is demonstrated by studying the transverse vibration of a string with geometric nonlinearity; its frequency-response curves with weak and strong nonlineari-ties and different numbers of trial functions are calculated, and stability of solutions on the curves is studied.
机译:为了获得一维连续系统的稳态响应,开发了一种新的时空增量谐波平衡(STIHB)方法。在STIHB方法中,对空间坐标中的控制偏微分方程(PDE)的Galerkin程序以获得一组常微分方程(ODE),在时间坐标中针对这组ODE的谐波平衡程序来获得谐波平衡将残差合并为空间和时间坐标中PDE的Galerkin程序,以同时获得时空谐波平衡残差,并用快速离散正弦变换(DST)或快速离散余弦变换(DCT)代替Galerkin过程中的积分)在空间坐标系中),在时间坐标系中进行快速傅立叶变换(FFT),这称为DST-FFT或DCT-FFT过程。当给出PDE的表达式时,可以通过计算机程序自动有效地获得任意二阶PDE的谐波平衡残差,其中可以任意选择空间和时间坐标中的基函数数,而无需进行其他任何推导是必需的。 STIHB方法有两种版本。在简单版本中,将DST-FFT或DCT-FFT程序用于计算谐波平衡残差,并将Broyden方法(准牛顿法)组合起来以找到使残差消失的解决方案,可用于构造稳定的状态的PDE解决方案。在复杂版本中,精确的雅可比矩阵被导出,并在牛顿-拉夫森方法中使用以实现更快的收敛。尽管其推导过程很复杂,但是当给出PDE的线性化表达式时,可以通过遵循计算例程自动而有效地获得任意PDE的精确雅可比矩阵,并且可以通过计算机程序轻松实现该矩阵。确切的雅可比矩阵也可以用于研究稳态响应的稳定性,而无需更多的额外导数。通过研究具有几何非线性的弦的横向振动证明了STIHB方法。计算了具有弱非线性和强非线性以及试验函数数目不同的频率响应曲线,并研究了曲线解的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号