首页> 外文会议>Saint Petersburg international conference on integrated navigation systems >A NON-MAGNETIC HEATING SYSTEM FOR THE NUCLEAR MAGNETIC RESONANCE GYROSCOPE
【24h】

A NON-MAGNETIC HEATING SYSTEM FOR THE NUCLEAR MAGNETIC RESONANCE GYROSCOPE

机译:核磁共振陀螺仪的非磁加热系统

获取原文
获取外文期刊封面目录资料

摘要

The nuclear magnetic resonance gyroscope(NMRG) is an apparatus with low size, power consumption, and high performance, which is investigated for replacing GPS in bad environment by DARPA of the USA government. NMRG is one the atomic gyroscopes, which detects the angular rate of the system by utilizing the atomic spin steady processing in the inertial frame. The working temperature of the NMRG is around 100 degrees. To reach this working temperature, a heating system for the bubble containing atomics is needed. A heating slice with special deign can extremely reduce the effect of atomics working performance, however it still exits large magnetic in the bubble. The magnetic changes the processing rate of atomics spin, and then it cuts down the measurement accuracy. Thanks to the low processing rate of Xe atomic spin, which does not response to high frequency magnetic, a high frequency heating system can be utilized to reduce the effect of the residue magnetic. The paper introduces the principle of the NMRG in the first part and then describes the design of the heating system with non-magnetic. To realize the high frequency heating system, a H-bridge high frequency heating signal is designed. The system produces high frequency and has simple electric circuit. The paper also proposes a constant temperature control system, calling PID control system, which utilizes the heat-sensitive sensor collecting the temperature and a program controlling the heating slice. It keeps the NMRG on the very high accuracy temperature.
机译:核磁共振陀螺仪(NMRG)是一种体积小,功耗低,性能高的设备,已被美国政府的DARPA研究用于替代恶劣环境中的GPS。 NMRG是原子陀螺仪之一,它通过利用惯性系中的原子自旋稳定过程来检测系统的角速度。 NMRG的工作温度约为100度。为了达到该工作温度,需要用于包含原子的气泡的加热系统。具有特殊设计的加热片可以极大地降低原子工作性能的影响,但是仍然会在气泡中留下大量的磁性。磁性改变了原子自旋的处理速度,从而降低了测量精度。由于Xe原子自旋的处理速率低,它对高频磁场没有响应,因此可以利用高频加热系统来降低残留磁性的影响。本文在第一部分介绍了NMRG的原理,然后介绍了非磁性加热系统的设计。为了实现高频加热系统,设计了一个H桥高频加热信号。该系统产生高频且电路简单。本文还提出了一种恒温控制系统,称为PID控制系统,该系统利用热敏传感器收集温度并控制加热切片的程序。它将NMRG保持在非常高精度的温度下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号