首页> 外文会议>International Conference on Field Programmable Logic and Applications >Efficient and reliable High-Level Synthesis Design Space Explorer for FPGAs
【24h】

Efficient and reliable High-Level Synthesis Design Space Explorer for FPGAs

机译:适用于FPGA的高效可靠的高级综合设计空间浏览器

获取原文

摘要

This paper presents a dedicated High-Level Synthesis (HLS) Design Space Explorer (DSE) for FPGAs. C-based VLSI design has the advantage over conventional RTL design that it allows the generation of micro-architectures with unique area vs. performance trade-offs without having to modify the original behavioral description (in this work area vs. latency). This is typically done by modifying the Functional Unit (FU) constraint file or setting different synthesis directives e.g. unroll loops or synthesize arrays as RAM or registers. The result of the design space exploration is a set of Pareto-optimal designs. In this work, we first investigate the quality of the exploration results when using the results reported after HLS (in particular the area) to guide the explorer in finding Pareto-optimal designs. We found that due to the nature of how HLS tools pre-characterize, the area and delay of basic logic primitives and the FPGAs internal structure the area results are not accurate and hence making it necessary to perform a logic synthesis after each newly generated design. This in turn leads to unacceptable long running time. This work therefore presents a dedicated DSE for FPGAs based on a pruning with adaptive windowing method to extract the design candidates to be further (logic) synthesized after HLS. The adaptive windowing is based on a learning method inspired from Rival Penalized Competitive Learning (RPCL) model in order to classify which designs need to be synthesized to find the true Pareto-optimal designs. Results show that our method leads to similar results compared to an explorer which performs a logic synthesis for each newly generated design, while being much faster.
机译:本文介绍了专用于FPGA的高级综合(HLS)设计空间浏览器(DSE)。基于C的VLSI设计具有优于常规RTL设计的优势,它允许生成具有唯一面积与性能折衷关系的微体系结构,而无需修改原始行为描述(在此工作区与延迟之间)。这通常是通过修改功能单元(FU)约束文件或设置不同的综合指令(例如,展开循环或将数组合成为RAM或寄存器。设计空间探索的结果是一组帕累托最优设计。在这项工作中,我们首先使用HLS(尤其是区域)之后报告的结果来指导勘探者寻找帕累托最优设计时,调查勘探结果的质量。我们发现,由于HLS工具如何预先表征,基本逻辑原语的面积和延迟以及FPGA内部结构的性质,面积结果不准确,因此有必要在每个新生成的设计之后执行逻辑综合。这反过来导致无法接受的长时间运行。因此,这项工作提出了一种基于FPGA的专用DSE,该DSE基于带有自适应开窗方法的修剪,以提取待在HLS之后进行进一步(逻辑)合成的设计候选。自适应窗口基于一种基于竞争对手竞争性竞争学习(RPCL)模型的学习方法,以便对需要合成哪些设计进行分类以找到真正的帕累托最优设计。结果表明,与对每个新生成的设计执行逻辑综合的资源管理器相比,我们的方法得出的结果相似,但速度要快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号