首页> 外文会议>International Conference on Ground Penetrating Radar >Simulation and modeling of response of buried pipes using FDTD and RSM
【24h】

Simulation and modeling of response of buried pipes using FDTD and RSM

机译:使用FDTD和RSM进行地下管道响应的仿真和建模

获取原文

摘要

Interpretation of B-scans gathered using a GPR is often difficult. The difficulty can be resolved to a large extent if responses of common objects under different scenarios are known. Finite difference time domain (FDTD) simulation is widely used to understand the response of buried objects to GPR under diverse object-ground scenarios. However, relating these responses to discern inherent patterns and trends has not been attempted by many. One useful tool for establishing relations between the responses under diverse conditions is the response surface method (RSM). The study presented here uses RSM along with FDTD simulation of response from buried pipes, modeled as circular air voids in a semi-infinite medium. The GPR response of a pipe is a function of object, host medium, and antenna characteristics. The response of GPR is treated as a RSM 4-parameter 3-level problem requiring 81 simulations; which are obtained from the FDTD method based on the GPRMax v2.0 simulator. The GPR responses considered here are the amplitude at the crown of each hyperbola and axes of each hyperbola (`a' and `b'). The computed amplitudes and hyperbola axes are expressed as functions of influencing parameters. Trend lines are drawn to illustrate the dependence of amplitudes on the parameters varied. The relationships for the axes of the hyperbolas are useful to estimate the size and depth of a pipe. The FDTD simulation combined with RSM helps to understand the response for any scenario falling within the chosen range without further computation-intensive simulations.
机译:解释使用GPR收集的B扫描通常很困难。如果已知不同情况下常见对象的响应,则可以在很大程度上解决该难题。时域有限差分(FDTD)模拟被广泛用于了解在各种物体-地面情况下掩埋物体对GPR的响应。但是,许多人尚未尝试将这些响应与可识别的固有模式和趋势相关联。在各种条件下建立响应之间关系的一种有用工具是响应面方法(RSM)。本文介绍的研究使用RSM以及FDTD对埋管响应的模拟,模拟为半无限介质中的圆形空隙。管道的GPR响应是对象,宿主介质和天线特性的函数。 GPR的响应被视为需要进行81次仿真的RSM 4参数3级问题。这些是从基于GPRMax v2.0模拟器的FDTD方法获得的。这里考虑的GPR响应是每个双曲线的顶部和每个双曲线的轴上的振幅(“ a”和“ b”)。计算出的振幅和双曲线轴表示为影响参数的函数。绘制趋势线以说明振幅对变化的参数的依赖性。双曲线轴的关系对于估计管道的大小和深度很有用。 FDTD仿真与RSM结合使用有助于了解在所选范围内的任何情况下的响应,而无需进一步的计算密集型仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号