首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Two-phase mini-thermosyphon electronics cooling, Part 4: Application to 2U servers
【24h】

Two-phase mini-thermosyphon electronics cooling, Part 4: Application to 2U servers

机译:两相微型热电虹吸电子装置冷却,第4部分:2U服务器的应用

获取原文

摘要

This paper is the fourth part of the present study on two-phase mini-thermosyphon cooling. As mentioned in the first three parts, gravity-driven cooling systems using microchannel flow boiling can become a long-term scalable solution for cooling of datacenter servers. Indeed, the enhancement of thermal performance and the drastic reduction of power consumption together with the possibility of energy reuse and the inherent passive nature of the system offer a wide range of solutions to thermal designers. While Part 1 presented the first-of-a-kind low-height microchannel two-phase thermosyphon test results and Parts 2 and 3 showed the system scale steady and dynamic modeling and simulation results associated with this design using our inhouse simulator, Part 4 deals here with an end-user application, i.e. the cooling of a 2U server. The dynamic code of Part 3 is used to model the behavior of a mini-thermosyphon that would fit within the height of a 2U server (8.9cm high), while respecting the other geometric constraints (positions of the processors, distance of the processors to the back of the blade, etc.). Thus, the simulated system consists of two parallel multi-microchannel evaporator cold plates on the top of two chips of about 11cm2, a riser, a common water-cooled micro-condenser at the back of the blade, a liquid accumulator and a downcomer (including the piping branches to/from the two cold plates). First, an analysis of the steady-state operation highlights multiple solutions from which one is stable and one is unstable. Then, the influences of few parameters such as refrigerants, piping diameters, water coolant inlet temperature and flow rates, filling ratio and heat flux are evaluated. Simulations with unbalanced heat loads on the two chips being cooled in parallel then show the desirable flow distribution obtained in such gravity-driven systems. Finally, temporal heat load and water coolant flow rate disturbances are simulated and discussed. Noting all of these numerous influences on optimal mini-thermosyphon operation, the need for a accurate and detailed simulation code, benchmarked versus actual system tests, is seen to be imperative for attaining a good, reliable, robust design.
机译:本文是本研究的第四部分,关于两相微型热管虹吸冷却。如前三部分所述,使用微通道流动沸腾的重力驱动冷却系统可以成为数据中心服务器冷却的长期可扩展解决方案。确实,热性能的增强和功耗的大幅度降低以及能量再利用的可能性以及系统固有的无源特性为热设计人员提供了广泛的解决方案。第1部分介绍了首例低高度微通道两相热虹吸测试结果,而第2部分和第3部分则显示了使用我们的内部仿真器进行的与该设计相关的系统规模稳定和动态建模和仿真结果,第4部分介绍了这里使用最终用户应用程序,即2U服务器的冷却。第3部分的动态代码用于对微型热虹吸管的行为进行建模,该行为适合2U服务器的高度(8.9厘米高),同时还要考虑其他几何约束(处理器的位置,处理器与处理器之间的距离)。刀片的背面等)。因此,该模拟系统包括两个平行的多微通道蒸发器冷板,位于两个约11cm2的芯片顶部,一个提升管,一个位于叶片背面的通用水冷微型冷凝器,一个储液器和一个降液管(包括去往/来自两个冷板的管道分支)。首先,对稳态操作的分析突出显示了多个解决方案,其中一个是稳定的,一个是不稳定的。然后,评估了诸如制冷剂,管道直径,冷却水入口温度和流量,填充率和热通量之类的几个参数的影响。在并行冷却的两个芯片上的不平衡热负荷下的仿真显示了在这种重力驱动系统中获得的理想流量分布。最后,对瞬时热负荷和冷却水流速扰动进行了仿真和讨论。注意到所有这些因素都会影响最佳的小型热电虹吸管的运行,因此,对于获得良好,可靠,稳健的设计,迫切需要精确,详细的仿真代码(基准测试与实际系统测试)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号