首页> 外文会议>IEEE International Conference on Semiconductor Electronics >Band Edge Modified Rare Earths - A route to the mid infrared in Silicon
【24h】

Band Edge Modified Rare Earths - A route to the mid infrared in Silicon

机译:乐队边缘改性稀土 - 到硅中红外线的路线

获取原文

摘要

We describe a new technology, band edge modification (BEM) of rare earth (RE) optical transitions in silicon. BEM refutes previous assumptions on the interaction of REs with semiconductors and other hosts (M. A. Louren?o et al, Adv. Funct. Mater., 26, 1986-1994, 2016). This approach opens up a route to efficient, fully-silicon-based, optoelectronic devices across the near and mid-IR. Intrinsic RE transitions are internal to the RE and do not contribute directly to carrier conduction in the bands of the host. Consequently, this makes them of limited use for optical detectors. The band edge modified RE levels exampled here interact directly with the silicon bands and so offer the possibility of extrinsic photovoltaic or photoconductive detectors. Silicon detectors and cameras currently completely dominate the ultra violet, visible and very near-IR regions - however they do not work well beyond 1.1 mm, the silicon band gap. We have used ion implantation to introduce europium, ytterbium and cerium into silicon photodiodes, also formed by ion implantation. We show that BEM enables efficient silicon detectivity to be extended from 1.1 mm out to the mid-IR region. The responsivites and detectivities of these new silicon detectors offer a real challenge to existing detector materials and devices in the 2 to 6 mm range - currently dominated by more challenging, and expensive materials such as mercury cadmium telluride, indium antimonide and the arsenides. Replacing these materials with silicon would offer enormous benefits in cost, reliability and also integration with the silicon microelectronics for detection and imaging. An additional benefit is using much less toxic materials and production processes - a major concern with current technologies. Low leakage currents achievable in silicon based photodiodes mean that further development of this new mid-IR silicon technology could lead to thermoelectrically cooled or even room temperature detectors. Current commercial detectors in this area have to be cooled to liquid nitrogen temperatures (77 K) to achieve the performance needed for most applications. Higher operating temperature (HOT) detectors are an industry aim and, particularly if implemented in silicon, would be a major breakthrough. We acknowledge the Royal Society UK for the award of the 2015 Brian Mercer Award for Innovation.
机译:我们描述了硅稀土(RE)光学过渡的新技术,带边缘修改(BEM)。 BEM驳斥了res用半导体和其他主体的相互作用的先前假设(M.A.Louren?O等,ADV。Funct。Mater。,26,1986-1994,2016)。此方法开辟了近乎IR和中外IR的高效,完全基于硅的光电器件的路线。内在的RE过渡是RE的内部,并且不会直接贡献主机的带中的载波传导。因此,这使得它们用于光学检测器的限制。这里检查的频带边缘修改的RE水平直接与硅带相互作用,因此提供外部光伏或光电导探测器的可能性。硅探测器和摄像机目前完全占主导地位的紫外线,可见光和非常接近的IR区域 - 但它们不适用于超过1.1毫米,硅带隙。我们使用离子植入将铕,镱和铈引入硅光电二极管,也通过离子注入形成。我们表明BEM使得能够从1.1毫米延伸到中外IR区域的高效硅探测器。这些新的硅探测器的响应和探测器对现有的探测器材料和装置中的装置提供了真正的挑战 - 目前由更具挑战性的挑战性和昂贵的材料如汞碲化镉,锑苷酸和砷化物如昂贵的材料。用硅替换这些材料将以成本,可靠性和与硅片微电子集成以进行检测和成像,提供巨大的益处。额外的益处是使用更少的有毒材料和生产过程 - 目前技术的主要问题。硅基光电二极管可实现的低漏电流意味着这种新的中红外硅技术的进一步发展可能导致热电冷却甚至室温探测器。该区域中的当前商业探测器必须冷却到液氮温度(77 k)以实现大多数应用所需的性能。更高的工作温度(热)探测器是一个行业目标,特别是如果在硅中实施,则会是一个重大突破。我们承认皇家社会英国颁发了2015年Brian Mercer奖的创新奖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号