首页> 外文会议>World biomaterials congress >Calcium phosphate/polyelectrolyte multilayer coatings for sequential delivery of multiple growth factors
【24h】

Calcium phosphate/polyelectrolyte multilayer coatings for sequential delivery of multiple growth factors

机译:磷酸钙/聚电解质多层涂层,用于依次输送多种生长因子

获取原文

摘要

Introduction: Many of the most promising strategies for regenerative tissue-engineering aim to replicate natural cellular microenvironments using biomimetic, resorbable materials capable of growth factor delivery. Combinations of growth factors synergistically enhance tissue regeneration, but require sequential, rather than co-delivery delivery for maximum efficacy. Polyelectrolyte multilayer (PEM) coatings retain growth factor activity, however, staggered, sequential delivery from these coatings requires barrier layers to prevent interlayer diffusion of multiple factors that results in co-delivery. Here we demonstrate that the incorporation of a biomimetic calcium phosphate (bCaP) layer into PEM can prevent interlayer diffusion of biomolecuies and enable staggered delivery. This modified PEM system is one of few aqueous, low temperature systems available for sequential, multifactor delivery and has potential to significantly impact the regenerative tissue-engineering field. Methods: bCaP coatings were prepared on sandblasted, 22 mm, treated tissue culture plastic disks, (NUNC, Rochester, NY) using a simulated body fluid method. The PEM coatings (8-30 bilayers) were applied on top of the bCaP layer by automated alternate 10 min dipping into 1 mg/ml poly L glutamic acid (-) or poly-L lysine (+) solutions (Sigma, St. Louis, MO) with saline rinses between. Coatings were characterized with x-ray diffraction and scanning electron microscopy. To demonstrate sequential delivery a combination of a proliferative factor, recombinant human fibroblast growth factor-2 (FGF-2) (150 ng/disk) (R & D Systems, Minneapolis, MN), and a cytotoxic factor antimycin A (AntiA) (213 μg/disk)(Sigma, St. Louis, MO) was used. In vitro cellular activity on the prepared coatings was assessed with MC3T3-E1 mouse calvariai osteoprogenitor cells (ATCC, Manassas, VA) seeded at 10 or 40 × 103 cells/cm2. Proliferative and cytotoxic effects were quantified using the LIVE/DEAD® assay (Invitrogen Life Technologies, Grand Island, NY). Statistical significances were determined by unpaired t-tests and one-way ANOVA with Tukey post-tests. Results: Uniform nanocrystalline coatings of bCaP (Fig. 1 A) and bCaP plus 30 bilayers of PEM (CaP-PEM30) (Fig. 1B) on the disks were observed via SEM. MC3T3-E1 s cultured directly on adsorbed AntiA with no bCaP or PEM coating (AntiA) resulted in 90% cell death on day 1 (Fig. 2A). MC3T3-E1s cultured on AntiA embedded under 8 bilayers of PEM (AntiA-PEM8) resulted in 47% cell death on day 1 due to diffusion of AntiA through PEM8. MC3T3-E1s cultured on AntiA embedded under bCaP and 8 bilayers of PEM (AntiA-CaP-PEM8) resulted in 15% cell death, significantly better than PEM only (p<0.001). These data demonstrate that the addition of bCaP to PEM coatings inhibits interlayer diffusion. Active FGF-2 was delivered from 30 bilayers of PEM above CaP (CaP-PEM30-FGF2) as demonstrated by a significant increase in MC3T3-E1 proliferation on day 1 as compared to cells cultured on the FGF-2-free control, (Fig. 2B). No growth factor release was detected by ELISA without cells present. Sequential access of cells to FGF-2 followed by AntiA was also demonstrated (Fig. 3A). On day 1, no differences were observed between CaP-PEM30-FGF2 and AntiA-CaP-PEM30-FGF2 indicating access to AntiA was successfully blocked by bCaP. On day 5 however, cell-mediated degradation of PEM30 and bCaP resulted in a significant decrease in LIVE staining between groups (Fig. 3A) indicating AntiA delivery. Conclusions: Addition of a bCaP barrier layer to a PEM delivery system prevents unwanted interlayer diffusion of embedded factors and enables cell-mediated sequential delivery of multiple factors. This technology can be utilized in multiple research applications where a sequential delivery profile activated by cell degradation of matrix is desired.
机译:简介:再生组织工程的许多最有前途的策略旨在使用能够生长因子传递的仿生,可吸收材料来复制天然细胞微环境。生长因子的组合可协同增强组织的再生能力,但需要顺序的而不是共同递送的方式才能发挥最大功效。聚电解质多层(PEM)涂层保留了生长因子的活性,但是,从这些涂层开始的交错顺序输送需要阻隔层,以防止导致共同输送的多种因素的层间扩散。在这里,我们证明了将仿生磷酸钙(bCaP)层并入PEM可以防止生物分子的层间扩散并实现交错输送。这种改进的PEM系统是可用于顺序多因素输送的少数几个水性低温系统之一,并且有可能显着影响再生组织工程领域。方法:使用模拟体液法在经喷砂处理的22 mm经过处理的组织培养塑料盘(NUNC,罗切斯特,纽约)上制备bCaP涂层。通过自动交替将10分钟浸入1 mg / ml聚L谷氨酸(-)或聚L赖氨酸(+)溶液(Sigma,St.Louis)中将PEM涂层(8-30双层)涂在bCaP层的顶部,MO)之间用盐水冲洗。用X射线衍射和扫描电子显微镜对涂层进行表征。为了证明顺序递送,将增殖因子,重组人成纤维细胞生长因子2(FGF-2)(150 ng / disk)(R&D Systems,明尼阿波利斯,明尼苏达州)和细胞毒性因子抗霉素A(AntiA)(使用213μg/盘)(Sigma,St.Louis,MO)。用接种在10或40×103细胞/ cm2的MC3T3-E1小鼠颅骨骨祖细胞(ATCC,Manassas,VA)评估在制备的涂层上的体外细胞活性。使用LIVE /DEAD®测定法(Invitrogen Life Technologies,纽约州格兰德岛)对增殖和细胞毒性作用进行了定量。统计显着性由未配对的t检验和单向方差分析与Tukey后检验确定。结果:通过SEM观察到磁盘上的bCaP(图1A)和bCaP加上30个PEM双层均匀的纳米晶体涂层(CaP-PEM30)(图1B)。直接在无bCaP或PEM涂层(AntiA)的吸附AntiA上培养的MC3T3-E1在第1天导致90%的细胞死亡(图2A)。在AntiA上的8个双层PEM(AntiA-PEM8)下埋入的AntiA上培养的MC3T3-E1在第1天由于AntiA通过PEM8扩散而导致47%的细胞死亡。 MC3T3-E1s在嵌入bCaP下的AntiA和8个双层PEM(AntiA-CaP-PEM8)上培养,导致15%的细胞死亡,明显优于仅PEM(p <0.001)。这些数据表明,将bCaP添加到PEM涂层可抑制层间扩散。活性FGF-2从高于CaP(CaP-PEM30-FGF2)的30个PEM双层中释放出来,这与第1天与不含FGF-2的对照培养的细胞相比,MC3T3-E1增殖显着增加证明了这一点(图2B)。没有细胞存在时,通过ELISA没有检测到生长因子释放。还证明了细胞先后获得FGF-2和抗A抗体(图3A)。在第1天,在CaP-PEM30-FGF2和AntiA-CaP-PEM30-FGF2之间未观察到差异,表明bCaP成功阻止了对AntiA的访问。然而,在第5天,细胞介导的PEM30和bCaP降解导致各组之间的LIVE染色显着降低(图3A),表明抗A传递。结论:将bCaP阻隔层添加到PEM输送系统可防止嵌入因子发生不必要的层间扩散,并使细胞介导的多种因子顺序输送成为可能。该技术可用于需要通过基质的细胞降解激活顺序递送特征的多种研究应用中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号