首页> 外文会议>World biomaterials congress >Elucidation of design rules for integrin ligand clustering in biomaterials using protein-engineered fabrics
【24h】

Elucidation of design rules for integrin ligand clustering in biomaterials using protein-engineered fabrics

机译:阐明使用蛋白质工程织物的生物材料中整联蛋白配体簇的设计规则

获取原文

摘要

Introduction: While ligand clustering is known to enhance integrin activation, this insight has been difficult to apply to implantable materials due to a lack of suitable technologies to design biomaterials with precisely tunable local and global ligand densities. Historically, ligand-clustering experiments relied on non-scalable fabrication techniques (e.g. e-beam lithography) and rigid materials (e.g. glass substrates). As an alternative, we present a novel combination of recombinant protein engineering to tune local ligand density and electrospinning to tune global ligand density of implantable biomaterial fabrics. Studies of cell spreading, integrin signaling, focal adhesion formation, and cell proliferation on these fabrics have revealed two general design principles for ligand presentation in implantable biomaterials. Materials and Methods: Local ligand density was controlled by genetically engineering a fibronectin-derived arginine-glycine-aspartate-(RGD-) based α_Vβ_3 integrin ligand into an elastin-like polypeptide (ELP) sequence. An otherwise identical, non-cell-adhesive control protein was produced by simply switching the positions of the glycine and aspartate amino acid residues. The two ELP variants were blended to achieve local ligand densities of 0 to 122,000 RGD μm~(-2), and the solutions were electrospun into fabrics to yield global ligand densities of 0 to 71,000 RGD μm~(-2). Fabrics were characterized by scanning electron microscopy and mechanical testing. Specific adhesion of human umbilical vein endothelial cells (HUVECs) on the fabrics was confirmed with integrin blocking studies. Cell proliferation was analyzed by DNA quantification and Ki67 immunostaining; cell morphology and focal adhesion formation were quantified by nuclear (DAPI), actin (phalloidin), and vinculin (antibody) staining; and integrin signaling was quantified by immunoblotting with antibodies targeting FAK and pFAK-397. Results and Discussion: Clustering of ligands was found to have the greatest influence on cell proliferation, focal adhesion number, and focal adhesion kinase expression near the ligand's effective thermodynamic dissociation constant (K_(D,eff) -12,000 RGD μm~(-2)). Near this global ligand density, HUVECs on ligand-clustered fabrics behaved similarly to cells grown on fabrics with significantly larger global ligand densities but without clustering. However, this ligand-clustering effect was found to have a threshold cut-off: at a local ligand density of 122,000 RGD μm~(-2), cell division, focal adhesion number, and focal adhesion kinase expression were significantly reduced relative to fabrics with identical global ligand density and lesser local ligand densities. Thus, when clustering results in overcrowding of ligands, integrin receptors are no longer able to effectively engage with their target ligands. Conclusion: Two general design principles for implantable materials were elucidated: clustering ligands enhances integrin-dependent signals via increased focal adhesion formation provided that (ⅰ) the global ligand density, i.e., the ligand density across the cellular length scale, is near the ligand's effective dissociation constant and (ⅱ) the local ligand density, i.e., the ligand density across the length scale of individual focal adhesions, is less than an overcrowding threshold. This fundamental understanding was made possible through the design of implantable fabrics based on protein-engineering technology, which enables the precise specification of ligand presentation. These results support the further design and exploration of protein-engineered biomaterials as ideal substrates for fundamental studies of cell-biomaterial interactions.
机译:简介:尽管已知配体簇可以增强整联蛋白的活化,但是由于缺乏合适的技术来设计具有精确可调的局部和整体配体密度的生物材料,因此很难将这种见识应用于可植入材料。从历史上看,配体聚类实验依赖于不可扩展的制造技术(例如电子束光刻)和刚性材料(例如玻璃基板)。作为替代方案,我们提出了重组蛋白工程以调节局部配体密度和静电纺丝以调节可植入生物材料织物的整体配体密度的新型组合。对这些织物上的细胞扩散,整联蛋白信号传导,粘着斑形成和细胞增殖的研究揭示了可植入生物材料中配体呈递的两个通用设计原理。材料和方法:通过将基于纤连蛋白的精氨酸-甘氨酸-天冬氨酸-(RGD-)基的α_Vβ_3整联蛋白配体遗传工程化为弹性蛋白样多肽(ELP)序列来控制局部配体密度。通过简单地切换甘氨酸和天冬氨酸氨基酸残基的位置,可以生产出其他相同的,非细胞粘附的对照蛋白。将这两种ELP变体混合以达到0至122,000 RGDμm〜(-2)的局部配体密度,并将溶液电纺到织物中以产生0至71,000 RGDμm〜(-2)的整体配体密度。通过扫描电子显微镜和机械测试来表征织物。整联蛋白阻断研究证实了人脐静脉内皮细胞(HUVEC)在织物上的特异性粘附。通过DNA定量和Ki67免疫染色分析细胞增殖;细胞形态和粘着斑形成通过核(DAPI),肌动蛋白(phalloidin)和纽蛋白(抗体)染色进行定量。整联蛋白的信号传导可通过针对FAK和pFAK-397的抗体进行免疫印迹来定量。结果与讨论:在配体的有效热力学解离常数(K_(D,eff)-12,000 RGDμm〜(-2)附近,发现配体聚集对细胞增殖,粘着斑数目和粘着斑激酶表达的影响最大。 )。接近此总体配体密度,配体簇状织物上的HUVEC的行为类似于在具有明显更大的全局配体密度但没有聚集的织物上生长的细胞。然而,发现这种配体簇聚作用具有阈值截止:在局部配体密度为122,000 RGDμm〜(-2)时,相对于织物,细胞分裂,粘着斑数目和粘着斑激酶的表达显着降低。具有相同的整体配体密度和较小的局部配体密度。因此,当聚集导致配体过度拥挤时,整联蛋白受体不再能够有效地与其靶配体结合。结论:阐明了两种可植入材料的一般设计原理:簇状配体通过增加粘着斑形成来增强整联蛋白依赖性信号,前提是(ⅰ)整体配体密度,即整个细胞长度范围内的配体密度接近配体的有效范围。解离常数和(ⅱ)局部配体密度,即各个粘着斑长度范围内的配体密度小于拥挤阈值。通过基于蛋白质工程技术的可植入织物的设计,使这种基本理解成为可能,这使得配体呈现的精确规范成为可能。这些结果为蛋白质工程生物材料的进一步设计和探索提供了支持,这些材料是细胞-生物材料相互作用基础研究的理想底物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号