首页> 外文会议>World biomaterials congress >Engineering 3D muscle microtissues by co-culturing human myoblasts and fibroblasts
【24h】

Engineering 3D muscle microtissues by co-culturing human myoblasts and fibroblasts

机译:通过共同培养人成肌细胞和成纤维细胞来工程化3D肌肉微组织

获取原文

摘要

Introduction: Actual in vitro models for skeletal muscle tissue engineering present many limitations for high content screening analysis: 2D models do not mimic the native cellular microenvironment, whereas 3D models require large amounts of cells, thus limiting the reproducibility of experiments'. In our lab, we developed a microfabricated platform for generating arrays of 3D microtissues with force tracking in real time. Here, we demonstrate how tissue formation, stability, and cell differentiation in microtissues generated from immortalized human myoblasts can be improved by co-culturing the myoblasts with fibroblasts. Materials and Methods: Human immortalized myoblasts were kindly provided by the Institute of Myology (Paris, France). Human fibroblasts BJ-5ta were obtained from ATCC. Polydimethylsiloxane (PDMS) platforms were made by casting Sylgard 184 liquid prepolymer over a silicon master fabricated by UV photolithography. The platforms consisted of 800x400x160μm wells containing two T-shape microcantilevers. A cooled suspension of cells within a reconstitution mixture consisting of collagen Ⅰ and matrigel was then added to the platform, resulting in around 200 cells per well, before incubation at 37°C to induce collagen/matrigel polymerization. Cell-generated forces were quantified from the deflection of the microcantilevers. Fig. 1: Engineering of human muscle microtissues. (A) Schematic of the microfabrication of the platform. (B) Temporal evolution of muscle microtissues constructed in collagen/matrigel gels in our microfabricated platform. The scale bar is 200μm. (C) Effect of human myoblasts/fibroblasts co-culture on the stability of microtissues after 3 days in culture. Results and discussion: After cell seeding, the collagen/matrigel matrix contained evenly distributed round cells. Over time, cells elongated and compacted the matrix to form a microtissue spanning between the two microcantilevers. After 3 days in culture, we observed that micromuscles composed only of human myoblasts tended to rupture (only 46% of stable tissues) whereas micromuscles consisting of 20% fibroblasts and 80% human myoblasts remained stable over time (94% of stable tissues). After 3 days in culture, the tension generated by muscle microtissues composed only of human myoblasts reached 20 μN while tissues composed of 20% fibroblasts and 80% human myoblasts generated a tension of 13 μN. We posit that fibroblasts helped stabilizing muscle microtissues by lowering the tissue-generated tension and by secreting additional extracellular matrix, thus reinforcing the integrity of the tissue. Interestingly, further analysis showed that fibroblasts improved spontaneous myoblasts differentiation toward myotubes after 5 days in culture. Conclusions: In this work we showed that engineered microtissues from a co-culture of human myoblasts and myoblasts exhibited a more stable morphology, thanks to a reinforcement of the extracellular matrix secreted by fibroblasts. The degree of differentiation of the muscle microtissues was also improved by the co-culture. The overall similarity of structural and functional characteristics between muscle microtissues and in vivo skeletal muscle is promising and our novel method for micromuscle generation opens the potential to high throughput, low volume screening applications. Moreover, the model's ability to quantitatively demonstrate the impact of biological and physical parameters on the formation, maturation, structure and function of muscle tissue provide unique opportunities to elucidate mechanisms of myogenesis in stable, three-dimensional, working muscle preparations. The authors thank the members of the technical staff of the PTA cleanroom in Grenoble for their technical support. We acknowledge the platform for immortalization of human cells from the Institute of Myology for providing us with human immortalized myoblasts. This work was supported by the European Commission (under FP7) via an ERC starting grant (BIOMIM, GA 259370) and by the Association Francaise contre les Myopathies (AFM-Telethon, project n°316530). CM is indebted to AFM-Telethon for providing a postdoctoral fellowship (n°16673).
机译:简介:骨骼肌组织工程的实际体外模型在高含量筛查分析方面存在许多局限性:2D模型不能模仿天然细胞微环境,而3D模型需要大量细胞,因此限制了实验的可重复性。在我们的实验室中,我们开发了一个微制造平台,用于实时生成力跟踪的3D微组织阵列。在这里,我们展示了如何通过将成肌细胞与成纤维细胞共同培养来改善永生人类成肌细胞产生的微组织的组织形成,稳定性和细胞分化。材料和方法:永生化的成肌细胞由肌病研究所(法国巴黎)友善提供。人成纤维细胞BJ-5ta获自ATCC。聚二甲基硅氧烷(PDMS)平台是通过将Sylgard 184液态预聚物浇铸在通过UV光刻技术制造的硅母板上而制成的。该平台由800x400x160μm的孔组成,包含两个T形微悬臂梁。然后将冷却的细胞悬浮液在由胶原蛋白Ⅰ和基质胶组成的重组混合物中添加到平台上,每孔产生约200个细胞,然后在37°C下孵育以诱导胶原蛋白/基质胶聚合。细胞产生的力从微悬臂梁的挠度中量化。图1:人体肌肉微组织的工程学。 (A)平台的微细加工示意图。 (B)在我们的微型加工平台中以胶原蛋白/基质胶制成的肌肉微组织的时间演变。比例尺为200μm。 (C)在培养3天后,人成肌细胞/成纤维细胞共培养对微组织稳定性的影响。结果与讨论:细胞接种后,胶原蛋白/基质胶基质包含均匀分布的圆形细胞。随着时间的流逝,细胞拉长并压紧了基质,形成了横跨两个微悬臂梁之间的微组织。培养3天后,我们观察到仅由人成肌细胞组成的微肌肉倾向于破裂(仅占稳定组织的46%),而由20%成纤维细胞和80%人成肌细胞组成的微肌肉则随时间保持稳定(占稳定组织的94%)。培养3天后,仅由人成肌细胞组成的肌肉微组织产生的张力达到20μN,而由20%成纤维细胞和80%人成肌细胞组成的组织产生的张力为13μN。我们认为成纤维细胞通过降低组织产生的张力和分泌额外的细胞外基质来帮助稳定肌肉微组织,从而增强组织的完整性。有趣的是,进一步的分析表明,培养5天后,成纤维细胞改善了自发成肌细胞向肌管的分化。结论:在这项工作中,我们证明了由于成纤维细胞分泌的细胞外基质的增强,来自人类成肌细胞和成肌细胞共培养的工程化微组织表现出更稳定的形态。共培养还改善了肌肉微组织的分化程度。肌肉微组织和体内骨骼肌之间结构和功能特征的总体相似性是有希望的,我们用于微肌肉生成的新方法为高通量,小体积筛选应用打开了潜力。此外,该模型定量证明生物学和物理参数对肌肉组织的形成,成熟,结构和功能的影响的能力为阐明稳定,三维,有效的肌肉制备中的肌生成机理提供了独特的机会。作者感谢格勒诺布尔PTA洁净室技术人员的技术支持。我们感谢Myology研究所为人类细胞提供永生化的平台,为我们提供了人类永生化的成肌细胞。这项工作得到了欧盟委员会(根据FP7计划)的ERC起始拨款(BIOMIM,GA 259370)和法国精神病防治协会(AFM-Telethon,项目编号316530)的支持。 CM感谢AFM-Telethon提供博士后研究金(编号16673)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号