首页> 外文会议>World biomaterials congress >Thickness sensing of nerve cells on double-layered hydrophobic polymer networks with distinct mechanical properties
【24h】

Thickness sensing of nerve cells on double-layered hydrophobic polymer networks with distinct mechanical properties

机译:具有双层机械特性的双层疏水聚合物网络上神经细胞的厚度感应

获取原文

摘要

Rat Schwann cell precursor line (SpL201) cells with the glial nature were used to demonstrate the dependence of cell spreading and proliferation on the coating thickness of two-layer substrates. Besides the better support of SpL201 cells on stiffer substrate, the effective stiffness cells can respond depended on the coating thickness. A critical coating thickness was required to completely screen the influence from the base layer and this value was higher for the softer top layer. Two poly(E-caprolactone) triacrylates (PCLTAs), PCLTA2k and PCLTA20k, were named after their number-average molecular weight of 2030 and 20020 g mol~(-1), respectively. Each substrate consisted of a top thin film layer and a base layer using either of these two PCLTAs. Different thicknesses for the top thin film layer have been achieved on the base layer. PCLTA2k and 20k were used in this study because of their distinct mechanical properties at 37°C after crosslinking. Crosslinked PCLTA2k was amorphous and soft with a tensile modulus of 4.8 ± 0.5 MPa, while crosslinked PCLTA20k was semi-crystalline and stiff with a much higher tensile modulus of 193 ± 16 MPa. SpL201 cell images on these two-layer polymer substrates at day 7 post-seeding are shown in Figure 1. Distinct cell proliferation was found for the substrates with different mechanical properties and coating thicknesses. Stiff crosslinked PCLTA20k was found to support SpL201 cell proliferation much better than soft crosslinked PCLTA2k. Much more cells were well spread on crosslinked PCLTA20k as the base material. As the thickness of soft PCLTA2k top layer increased, the cell number decreased gradually. When the PCLTA2k film was sufficiently thick, cells showed a similar density to that on pure PCLTA2k network. An opposite trend for SpL201 cell proliferation was demonstrated in the mirror system with soft PCLTA2k network as the base material. Cell spreading was shown in Figure 2. Two trends were dearly demonstrated on the two-layer substrates of distinct crosslinked PCLTAs. SpL201 cells could spread more with larger cell areas on the stiffer substrates of crosslinked PCLTA20k than on crosslinked PCLTA2k. Cell area did not differ significantly from the base material when the coating thickness was 870 nm for crosslinked PCLTA2k and 170 nm for crosslinked PCLTA20k. When the top layer became thicker, cell area gradually increased or decreased asymptotically to the value on the bulk form of the coating material. The critical coating thickness that could block the influence of the base material was ~2 μm for soft crosslinked PCUA2k and μ5 μm for stiff crosslinked PCUA20k. It indicated that the mechanical stiffness of the top layer could influence the critical coating thickness for cells to be able to sense. Figure 1. Fluorescence cell images for actin filaments (stained with RP, red) and nuclei (stained with DAPI, blue) at day 7 on the top layer of crosslinked PCLTA2k and 20k with different thicknesses covering the base layer of crosslinked PCLTA20k and 2k, respectively. Scale bar of 200 μm is applicable to all. Figure 2. Cell area of SpL201 cells at day 1 on the thin films of PCLTA2k and 20k with different thickness on a base layer of crosslinked PCLTA20k and 2k, respectively. Conclusions: We have used two PCLTAs with distinct mechanical properties to fabricate a series of substrates consisting of a top thin layer with controlled thickness from one PCLTA and a base layer of bulk networks from the other. The mirror systems demonstrated the roles of both thickness and stiffness of the top layer in mechanosensing of SpL201 cells. The stiffer substrate of crosslinked PCLTA20k could support both cell spreading and proliferation better than crosslinked PCLTA2k. A critical coating thickness for screening the effect of the base layer was higher for the softer network of crosslinked PCLTA2k, compared with crosslinked PCLTA20k.
机译:使用具有神经胶质特性的大鼠Schwann细胞前体细胞(SpL201)细胞来证明细胞扩散和增殖对两层底物涂层厚度的依赖性。除了在较硬的基材上更好地支撑SpL201单元外,有效的刚性单元还可以响应,具体取决于涂层厚度。需要一个临界涂层厚度才能完全屏蔽来自基础层的影响,对于较软的顶层,此值较高。以其数均分子量分别为2030和20020 g mol〜(-1)命名了两种聚(E-己内酯)三丙烯酸酯(PCLTA2k)和PCLTA20k。每个基板由使用这两个PCLTA中的任一个的顶部薄膜层和基础层组成。在基础层上已经实现了顶部薄膜层的不同厚度。在本研究中使用PCLTA2k和20k是因为它们在交联后在37°C下具有明显的机械性能。交联的PCLTA2k是非晶态且柔软,拉伸模量为4.8±0.5 MPa,而交联的PCLTA20k是半结晶且坚硬,拉伸模量更高,为193±16 MPa。接种后第7天,这些两层聚合物基质上的SpL201细胞图像如图1所示。发现具有不同机械性能和涂层厚度的基质具有明显的细胞增殖。发现刚性交联的PCLTA20k比软交联的PCLTA2k更好地支持SpL201细胞增殖。在交联的PCLTA20k作为基础材料上,细胞分布良好。随着软PCLTA2k顶层厚度的增加,孔数逐渐减少。当PCLTA2k膜足够厚时,细胞显示出与纯PCLTA2k网络相似的密度。在以软PCLTA2k网络为基础材料的镜面系统中,显示了SpL201细胞增殖的相反趋势。细胞扩散如图2所示。在不同的交联PCLTA的两层底物上,两种趋势得到了很好的证明。与交联的PCLTA2k相比,在交联的PCLTA20k的较硬基板上,SpL201细胞在较大的细胞区域中分布更多。当交联的PCLTA2k的涂层厚度为870 nm,交联的PCLTA20k的涂层厚度为170 nm时,泡孔面积与基材没有显着差异。当顶层变厚时,泡孔面积逐渐增加或减少,渐渐减小到涂层材料整体上的值。对于软交联的PCUA2k,可以阻止基材影响的临界涂层厚度为〜2μm,对于硬交联的PCUA20k为5μm。这表明顶层的机械刚度可能影响细胞能够感知的临界涂层厚度。图1.第7天,交联的PCLTA2k和20k顶层的肌动蛋白丝(用RP染色,红色)和细胞核(用DAPI染色,蓝色)的荧光细胞图像,不同厚度覆盖了交联的PCLTA20k和2k的基础层分别。 200μm的比例尺适用于所有人。图2.在第1天,分别在交联的PCLTA20k和2k的基础层上具有不同厚度的PCLTA2k和20k薄膜上的SpL201细胞的细胞面积。结论:我们已经使用了两种具有不同机械性能的PCLTA来制造一系列基底,这些基底由一个PCLTA制成的厚度受控的顶部薄层和另一个PCLTA的本体网络的基底层。反射镜系统展示了顶层的厚度和刚度在SpL201细胞机械传感中的作用。交联的PCLTA20k的刚性基材比交联的PCLTA2k更好地支持细胞扩散和增殖。与交联的PCLTA20k相比,对于交联的PCLTA2k较软的网络,用于筛选基础层效果的临界涂层厚度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号