首页> 外文会议>World biomaterials congress >Inverse gradient matrix system for osteochondral tissue engineering
【24h】

Inverse gradient matrix system for osteochondral tissue engineering

机译:用于骨软骨组织工程的逆梯度矩阵系统

获取原文

摘要

Introduction: Osteoarthntis (OA) is a growing issue worldwide, yet many of the clinical treatments for OA are only palliative. Since osteochondral (OC) defect repair remains a significant problem in orthopedic surgery, researchers are currently working to develop matrix systems for OC repair and regeneration. While some success was reached using single and bi-phasic designs, overtime, the need for more tailored systems became apparent. Our group has introduced a graded structure with bone and cartilage supporting layers arranged in reverse gradients in order to achieve an integrated OC matrix system. We hypothesize that by carefully tailoring each biomaterial phase we can not only support regeneration of the bone phase, but also provide the cues necessary to promote regeneration of the cartilage phase. Here, we aim to design and investigate the hydrogel phase with varying mechanical strength to support cartilage regeneration, and explore the gel's integration into the polymeric phase creating a new generation scaffold system for OC defect repair and regeneration. Materials and Methods: Using the Hystem kit (ESI BIO), a hyaluaronan gel (HA) was mixed with a polyethylene glycol (PEG) cross-linker in ratios of 1:1 -1:7 (PEG:HA), and characterized for storage/loss modulus using a rheometer. After a range of gels were selected based on their mechanical profiles (1:2,1:4, and 1:7), 400-500k mesenchymal stem cells were seeded in the gels and cultured for 21 days in chondrogenic media. After 21 days the GAG content of the samples were determined through alcian blue staining as well as the DMMB assay. Additionally, immunofluorescence (IF) staining was done to observe collagen Ⅱ, aggrecan, and Sox9. Finally, using thermal sintering and porogen leaching, poly(85 lactide-co-15 glyclolide) (PLGA) microspheres were fabricated into a gradient scaffold which was infiltrated with the selected gel prior to μCT analysis. Results and Discussion: Based on the rheological data it was determined that modification of the PEG:HA ratio can vary the overall modulus of the gels (~10Pa -45Pa). After 21 days of culture the results show that with an increase in modulus there is also an increase in GAG expression and presence of key proteins such as collagen II and aggrecan (Figure 1). The time sensitive crosslinking of the HA gel allows it to infiltrate the available pore space of the gradient matrix prior to full gelation, acting as a chondro-inductive secondary phase/cell delivery vehicle. This said, as supported by the μCT data, when the designed gel is used to infiltrate the pore space of the matrix we find that there is in fact an inverse gradient of hydrogel to polymer (Figure 2). Conclusions: The complexity of OC tissue regeneration lies in the need to not only regenerate cartilage and bone but also the interface region. Based on the quantitative and qualitative expression data, we established a gel matrix suitable for regeneration of the cartilage phase of OC tissue by studying the effects of mechanical strength on cartilage regeneration. With the identified cartilage phase incorporated into the graded PLGA structure we have now designed an inverse gradient matrix system capable of supporting fully integrated OC tissue regeneration.
机译:简介:骨关节炎(OA)在世界范围内正在成为一个日益严重的问题,但是许多针对OA的临床治疗只是姑息治疗。由于骨软骨(OC)缺损修复仍然是整形外科手术中的重要问题,因此研究人员目前正在努力开发用于OC修复和再生的基质系统。尽管使用单相和双相设计取得了一些成功,但随着时间的推移,对更定制系统的需求变得显而易见。我们的小组介绍了一种渐变结构,其中骨骼和软骨支撑层以相反的梯度排列,以实现集成的OC矩阵系统。我们假设通过仔细地定制每个生物材料相,我们不仅可以支持骨相的再生,而且还可以提供促进软骨相再生的必要提示。在这里,我们旨在设计和研究具有不同机械强度的水凝胶相,以支持软骨再生,并探索凝胶与聚合物相的结合,从而创建用于OC缺损修复和再生的新一代支架系统。材料和方法:使用Hystem试剂盒(ESI BIO),将透明质酸凝胶(HA)与聚乙二醇(PEG)交联剂按1:1 -1:7(PEG:HA)的比例混合,并进行表征使用流变仪的储能/损耗模量。根据机械特性(1:2、1:4和1:7)选择了一系列凝胶后,将400-500k间充质干细胞接种到凝胶中,并在软骨形成培养基中培养21天。 21天后,通过阿尔辛蓝染色以及DMMB测定来确定样品的GAG含量。另外,通过免疫荧光(IF)染色观察胶原Ⅱ,聚集蛋白聚糖和Sox9。最后,使用热烧结和成孔剂浸出法,将聚(85丙交酯-co-15糖化内酯)(PLGA)微球制成梯度支架,并在进行μCT分析之前将其浸入所选的凝胶中。结果与讨论:根据流变学数据,确定PEG:HA比值的改变可以改变凝胶的总体模量(〜10Pa -45Pa)。培养21天后,结果表明,随着模量的增加,GAG表达也增加,关键蛋白如胶原蛋白II和聚集蛋白聚糖的存在也增加(图1)。 HA凝胶的时间敏感性交联使其能够在完全凝胶化之前渗入梯度基质的可用孔空间,充当软骨诱导性第二相/细胞递送载体。这就是说,根据μCT数据的支持,当使用设计的凝胶渗透基质的孔隙时,我们发现实际上水凝胶与聚合物之间存在反比梯度(图2)。结论:OC组织再生的复杂性在于不仅需要再生软骨和骨骼,还需要再生界面区域。基于定量和定性的表达数据,我们通过研究机械强度对软骨再生的影响,建立了适用于OC组织软骨期再生的凝胶基质。通过将识别出的软骨相结合到分级PLGA结构中,我们现在设计了一种能够支持完全整合的OC组织再生的逆梯度矩阵系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号