首页> 外文会议>World biomaterials congress >Facile synthesis of nano-composite double network hybrid hydrogels via UV polymerisation for cartilage tissue engineering applications, with functionalised silica nanoparticles as macro-crosslinkers
【24h】

Facile synthesis of nano-composite double network hybrid hydrogels via UV polymerisation for cartilage tissue engineering applications, with functionalised silica nanoparticles as macro-crosslinkers

机译:通过功能化二氧化硅纳米粒子作为宏观交联剂,通过紫外线聚合轻松合成纳米复合双网络混合水凝胶,用于软骨组织工程应用

获取原文

摘要

Introduction: Hydrogels are a highly versatile material for tissue engineering applications, but are limited in their use due to the inherently weak mechanical properties they exhibit. Control over their swelling and mechanical strengths, as well as then drugloading ability can bring about many uses in regenerative medicine. Here, a simple and fast method to prepare two different hybrid hydrogels with nanocomposite structures has been developed, using UV polymerisation, silica nanoparticles and glucose oxidase (GOx). These gels are made using a 2 step sequential technique, where the first network consisting of a polyelectrolyte polymer is prepared followed by a second network neutral polymer. This creates a synergetic effect of both polymers ranther than a linear effect to their mechanical properties. SNP functionality in these gels are important as macro-crosslinkers and also for potential ion or drug loading to assist in combating diseases when placed in vivo, such as osteoarthritis. The assessment of SNP size and concentration will conclude if smaller or larger particles are more efficient at providing mechanical stability and strength. Materials and Methods: SNPs are synthesised to 50,100,150 nm then functionalised using APTES and VTEOS to get vinyl-SNPs and amine-SNPs. The first hydrogel is synthesised by preparing a monomer solution of 2-acrylamido-2-methylpropane sulfonic acid (PAMPS) with GOx to prevent oxygen inhibition and v-SNP for macro-crosslinking, and exposed to UV (365nm) for photo polymerization, once gelled it is then swollen in a monomer solution of acrylamide monomers and GOx before being UV polymerised. Finally, a gel is formed, labelled DNHG1. DNHG2 follows a similar synthesis route but in the first step EDC chemistry is applied to crosslink the a-SNPS (in MES buffer) to the poly acrylic acid. Results and Discussion: Successful synthesis of both gels using the described method have been repeated to get indicative results. Two controls per gel were made; control without SNPs, and control without SNPs and GOx. Mechanical strengths and swelling abilities change drastically in the presence SNP and GOx for these gels. Characterisation techniques such as TGA, mercury porosimetry, SEM, UV-VIS show that particle retention is high in the gels (above 66% after purification in water for 3 weeks) and pore interconnect sizes range from 5-100 micrometers. Mechanical strengths reach up to 2 MPa compared to controls 0.05MPa. Smaller nanoparticles prove to give the best results and best retention meaning their higher surface area is favoured for crosslinking. Images provided show the PAMPS/PAAm hydrogel exhibiting 75% strain with 40wt% V-SNP. Figure attached shows PAAc/PAAm mechanical strengths at different A-SNP concentrations. Conclusion: A tailorable material has been developed using silica nanoparticles as macro-crosslinkers. The benefit of this material is it ability to control the mechanical strength and swelling ability. GOx is a key component, preventing oxygen inhibition in the polymerisation step for higher conversion of monomers leading to stronger mechanical properties matching articular cartilage. This opens up the door to open vessel photo polymerisation and the facile preparation of synthetic hydrogels for tissue engineering.
机译:简介:水凝胶是用于组织工程应用的高度通用的材料,但由于其固有的弱机械性能,其使用受到限制。控制它们的溶胀和机械强度以及随后的载药能力可以在再生医学中带来许多用途。在这里,已经开发了一种简单快速的方法,使用紫外线聚合,二氧化硅纳米颗粒和葡萄糖氧化酶(GOx)来制备具有纳米复合结构的两种不同的杂化水凝胶。这些凝胶使用两步顺序技术制备,其中先制备由聚电解质聚合物组成的第一网络,然后制备第二网络中性聚合物。这产生了两种聚合物的协同作用,而不是线性影响它们的机械性能。这些凝胶中的SNP功能非常重要,可作为大分子交联剂使用,也可用于潜在的离子或药物负载,以帮助抵抗体内放置的疾病(如骨关节炎)。如果较小或较大的颗粒在提供机械稳定性和强度方面更有效,则对SNP尺寸和浓度的评估将得出结论。材料和方法:将SNP合成至50,100,150 nm,然后使用APTES和VTEOS将其官能化,得到乙烯基SNP和胺SNP。通过制备带有GOx的2-丙烯酰胺基-2-甲基丙烷磺酸(PAMPS)单体溶液以防止氧气抑制和v-SNP进行宏观交联,然后暴露于UV(365nm)进行光聚合,来合成第一水凝胶。胶凝后,将其在丙烯酰胺单体和GOx的单体溶液中溶胀,然后进行UV聚合。最后,形成标记为DNHG1的凝胶。 DNHG2遵循类似的合成路线,但第一步是采用EDC化学方法将a-SNPS(在MES缓冲液中)交联到聚丙烯酸上。结果与讨论:重复使用所述方法成功合成两种凝胶以获得指示性结果。每种凝胶制成两个对照。没有SNP的情况下进行控制,没有SNP和GOx的情况下进行控制。在这些凝胶存在SNP和GOx的情况下,机械强度和溶胀能力会发生巨大变化。诸如TGA,汞孔隙率法,SEM,UV-VIS等表征技术表明,凝胶中的颗粒保留率很高(在水中纯化3周后,其保留率超过66%),孔互连的尺寸范围为5-100微米。与对照组的0.05MPa相比,机械强度高达2 MPa。较小的纳米粒子被证明可提供最佳结果和最佳保留,这意味着它们较高的表面积有利于交联。提供的图像显示PAMPS / PAAm水凝胶在40%(重量)的V-SNP上显示75%的应变。附图显示了在不同的A-SNP浓度下PAAc / PAAm的机械强度。结论:已经使用二氧化硅纳米颗粒作为宏观交联剂开发了一种可定制的材料。这种材料的好处是能够控制机械强度和溶胀能力。 GOx是关键成分,可防止在聚合步骤中抑制氧,以提高单体的转化率,从而导致更强的机械性能与关节软骨相匹配。这为打开容器光聚合和方便地制备用于组织工程的合成水凝胶打开了大门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号