首页> 外文会议>World biomaterials congress >Biodegradable vinyl polymers synthesized by nitroxide-mediated radical ring-opening polymerization, for biomedical applications
【24h】

Biodegradable vinyl polymers synthesized by nitroxide-mediated radical ring-opening polymerization, for biomedical applications

机译:通过氮氧化物介导的自由基开环聚合反应合成的可生物降解的乙烯基聚合物,用于生物医学应用

获取原文

摘要

Introduction: Vinyl polymers have been the focus of intensive research over the past few decades, leading to the development of controlled radical polymerization (CRP) techniques, such as nitroxide-mediated polymerization (NMP), atom-transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer polymerization (RAFT). CRP techniques enable the synthesis of materials with a broad diversity of architectures, compositions and functionalities. Yet, the resistance of vinyl backbones to degradation may limit their application in major fields of research, including (nano)medidne and environmental protection. Therefore, the development of synthetic strategies to enable complete or partial degradation of vinyl polymers is key to new opportunities for the application of these materials. To successfully synthesize (bio)degradable controlled vinyl polymers, we investigated the combination of NMP of metfiacrylate derivatives with radical ring-opening polymerization (rROP) of various cyclic ketene acetals (CKAs) (see Figure 1), from copolymerization to degradability and cytotoxicity. Figure 1. Synthesis of (bio)degradable vinyl polymer comprising multiple ester functions, by radical copolymerization of vinyl monomer and cyclic ketene acetal (CKA) (from ref 4). Materials and Methods: Three CKAs, namely 2-methylene-1,3-dioxepane (MDO), 5,6-benzo-2-methylene-1,3-dioxepane (BMDO) and 2-methylene-4-phenyl-1,3-dioxolane (MPDL), were synthesized and copolymerized with methyl methacrylate (MMA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Polymerization livingness was assessed by ~(31)P NMR and confirmed by the synthesis of a library of block copolymers. Copolymer degradation was investigated at basic and neutral pH, and their cytotoxicity was assessed on three different cell lines (NIH/3T3, HUVEC and J774 cells) by MTT assay at 2 different concentrations. Results and Discussion: Among the three CKAs tested, MPDL showed a unique ability to copolymerize with methacrylate derivatives by NMP, with dispersities as low as 1,25 and living fraction up to 75%, which further allowed block copolymer synthesis'6!. Hydrolysis showed predictable molar mass reductions, from 25% to 95%, as a function of the amount of MPDL in the monomer feed. By further investigating structures and properties of MPDL-containing copolymers, we demonstrated that the styrene-like ring-opened structure of MPDL allows it to act as a controlling comonomer while inserting degradable units'7]. Finally, the innocuousness of these copolymers and their degradation products was confirmed in vitro, with cell viability ranging from 75 to 100%. Figure 2. Hydrolytic degradation of P(OEGMA-co-MPDL) at basic pH, as a function of the content in MPDL. (a) Evolution of the number-average molar mass, Mn, over time for different final fractions of MPDL (F_(MPDL)). (b) Example of SEC chromatogram evolution over time (F_(MPDL)=0.248) (from ref 7). Conclusions: These data demonstrate that the combination of NMP and rROP represents one of the most promising strategies for new tailor-made biodegradable and biocompatible polymers in the biomedical field.
机译:简介:在过去的几十年中,乙烯基聚合物一直是深入研究的重点,从而导致可控自由基聚合(CRP)技术的发展,例如氮氧化物介导的聚合(NMP),原子转移自由基聚合(ATRP)和可逆的加成-断裂链转移聚合(RAFT)。 CRP技术可以合成具有多种结构,组成和功能的材料。然而,乙烯基骨架对降解的抗性可能会限制其在主要研究领域的应用,包括(纳米)乙二胺和环境保护。因此,开发能够完全或部分降解乙烯基聚合物的合成策略是应用这些材料的新机会的关键。为了成功地合成(生物)可降解的受控乙烯基聚合物,我们研究了甲基丙烯酸酯衍生物的NMP与各种环烯酮缩醛(CKA)的自由基开环聚合(rROP)的结合(见图1),从共聚到可降解性和细胞毒性。图1.通过乙烯基单体与环状烯酮缩醛(CKA)的自由基共聚,合成具有多种酯官能团的(生物)可降解乙烯基聚合物(参考文献4)。材料和方法:三个CKA,即2-亚甲基-1,3-二氧戊环(MDO),5,6-苯并-2-亚甲基-1,3-二氧戊环(BMDO)和2-亚甲基-4-苯基-1,合成了3-二氧戊环(MPDL),并与甲基丙烯酸甲酯(MMA)和低聚(乙二醇)甲基丙烯酸甲酯(OEGMA)共聚。通过〜(31)P NMR评估聚合活性,并通过合成嵌段共聚物的文库证实。在碱性和中性pH下研究了共聚物的降解,并通过2种不同浓度的MTT分析在三种不同的细胞系(NIH / 3T3,HUVEC和J774细胞)上评估了它们的细胞毒性。结果与讨论:在测试的三个CKA中,MPDL显示出独特的通过NMP与甲基丙烯酸酯衍生物共聚的能力,分散度低至1,25,活性分数高达75%,这进一步使嵌段共聚物得以合成'6!。水解显示出可预测的摩尔质量降低,从25%降低到95%,这是单体进料中MPDL量的函数。通过进一步研究含MPDL的共聚物的结构和性能,我们证明了MPDL的苯乙烯样开环结构可以使其在插入可降解单元的同时充当控制共聚单体的作用[7]。最后,在体外证实了这些共聚物及其降解产物的无毒性,细胞活力为75%至100%。图2.碱性pH下P(OEGMA-co-MPDL)的水解降解,随MPDL含量的变化而变化。 (a)MPDL的不同最终分数(F_(MPDL))的数均摩尔质量Mn随时间的变化。 (b)SEC色谱图随时间变化的示例(F_(MPDL)= 0.248)(来自参考文献7)。结论:这些数据表明,NMP和rROP的结合代表了生物医学领域量身定制的新型可生物降解和生物相容性聚合物的最有前途的策略之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号