首页> 外文会议>World biomaterials congress >First ever solid state crosslinking of hydrogel precursors: opening up unprecedented hydrogel processing avenues in the biomedical field
【24h】

First ever solid state crosslinking of hydrogel precursors: opening up unprecedented hydrogel processing avenues in the biomedical field

机译:水凝胶前体的首次固态交联:在生物医学领域开辟了前所未有的水凝胶加工途径

获取原文

摘要

Introduction: Hydrogels are biomaterials often obtained by incorporating a polymerizable double bond in a hydrophilic prepolymer enabling UV-curing. An important requirement for the curing is high mobility of the reactive groups. This is either achieved by dissolving or melting the prepolymers, which is a limiting step for many processing techniques e.g. electrospinning and 3D printing. Radicals initiating the crosslinking can be generated by adding a photo-initiator(PI). Drawbacks of a PI include toxicity, low solubility and mixing problems. To date, UV-curable urethane-based poly(ethylene glycol)(PEG) hydrogels have been reported. Nonetheless, those materials do not exhibit the unique solid state UV reactivity without PI, as targeted for the novel hydrogel precursors developed in this work. Materials and Methods: Acrylate-terminated, urethane-based PEG(AUP) was prepared by reacting PEG 2000 with isophorone diisocyanate(IPDI) and monoacrylate PEG(336 Da) in a 1:2:2 molar ratio. UV-curing was assessed using rheology and differential photocalorimetry(DPC). 1-Hydroxycyclohexyl-phenyl-ketone(HCPK), 0.2 wt% was used as PI. Cell tests were performed using human foreskin fibroblasts(HFF). Results: In a first part, the precursor was fully characterized using nuclear magnetic resonance spectroscopy, infrared spectroscopy and gel permeation chromatography. AUP is solid at room temperature (Tm=37°C) and has a remarkably high water compatibility: even for a AUP content of 90 wt%, a homogeneous solution is obtained. The water content prior to UV curing affects the final characteristics of the hydrogel. These were evaluated using rheology, tensile testing, DPC and swelling tests. Secondly, and most importantly, the materials show unprecedented photo reactivity. Efficient crosslinking occurs both in the solid state and in absence of a photo-initiator. DPC results (F1) show that without PI, the maximal polymerization speed is about 50% higher in the solid state compared to the molten state. F1: Left: DPC: UV-curing in PI absence (full line) and presence (dolled line)and in the solid state (20°C,blue) and molten state (50°C,red). The bottom curves show the double bond conversion. Right: Rheology:The red curves are without PI and blue curves with PI. UV-curing in the presence of water was characterized using rheology (F1). Adding a PI results in faster UV-curing, while similar final moduli are obtained. This is in line with the DPC results for the molten state. Some exciting applications of AUP are shown in F2. A first example is the production of UV-cured hydrogel fibers. As the microfibers are in a solid state post-processing, conventional electrospun hydrogel fibers cannot be UV-cured. However, due to the high solid state reactivity of this material this is possible. Secondly, the material was 3D-printed from melt. The effective UV curing was shown by swelling studies. Very interestingly, the obtained materials were highly flexible. F2: Electrospun fibers (top), 3D printed scaffold (bottom). In a final part, indirect and direct cell tests using HFF show good biocompatibility. Conclusion: We for the first time report on the solid state UV-curing of hydrogel precursors for biomedical applications. The reactivity in the solid state opens up unprecedented possibilities towards material processing, while the absence of a photoinrtiator can reduce cytotoxicity and eliminates preparation steps.
机译:简介:水凝胶是生物材料,通常是通过将可聚合的双键结合到能够进行UV固化的亲水性预聚物中而获得的。固化的重要要求是反应性基团的高迁移率。这可以通过使预聚物溶解或熔融来实现,这对于许多加工技术,例如加工工艺来说是一个限制步骤。静电纺丝和3D打印。引发交联的自由基可以通过添加光引发剂(PI)来产生。 PI的缺点包括毒性,低溶解度和混合问题。迄今为止,已经报道了可UV固化的基于氨基甲酸酯的聚(乙二醇)(PEG)水凝胶。但是,这些材料在没有PI的情况下不会表现出独特的固态UV反应性,这是针对这项工作开发的新型水凝胶前体的目标。材料和方法:通过将PEG 2000与异佛尔酮二异氰酸酯(IPDI)和单丙烯酸酯PEG(336 Da)以1:2:2的摩尔比反应,制得丙烯酸酯封端的氨基甲酸酯基PEG(AUP)。使用流变学和差示量热法(DPC)评估UV固化。使用0.2重量%的1-羟基环己基-苯基-酮(HCPK)作为PI。使用人包皮成纤维细胞(HFF)进行细胞测试。结果:在第一部分中,使用核磁共振波谱,红外光谱和凝胶渗透色谱法对前驱物进行了全面表征。 AUP在室温(Tm = 37°C)下呈固体,并具有很高的水相容性:即使AUP含量为90 wt%,也可以获得均匀的溶液。 UV固化之前的水含量会影响水凝胶的最终特性。使用流变学,拉伸测试,DPC和溶胀测试对它们进行了评估。其次,也是最重要的是,这些材料显示出空前的光反应性。在固态和不存在光引发剂的情况下均发生有效的交联。 DPC结果(F1)表明,没有PI,固态时的最大聚合速度比熔融态高约50%。 F1:左:DPC:在没有PI(实线)和存在(美元线)且处于固态(20°C,蓝色)和熔融态(50°C,红色)的情况下进行UV固化。底部曲线显示了双键的转化率。右:流变性:红色曲线不带PI,蓝色曲线不带PI。使用流变学(F1)对在水存在下的UV固化进行了表征。添加PI可使UV固化更快,同时获得相似的最终模量。这与DPC对于熔融态的结果相符。 F2中显示了AUP的一些令人兴奋的应用程序。第一个例子是UV固化的水凝胶纤维的生产。由于微纤维处于固态后处理中,因此常规的电纺水凝胶纤维不能被UV固化。然而,由于该材料的高固态反应性,这是可能的。其次,将材料从熔体中进行3D打印。溶胀研究表明有效的紫外线固化。非常有趣的是,所获得的材料具有很高的柔韧性。 F2:静电纺丝纤维(顶部),3D打印支架(底部)。最后,使用HFF进行的间接和直接细胞测试显示出良好的生物相容性。结论:我们首次报道了用于生物医学应用的水凝胶前体的固态UV固化。固态的反应性为材料加工开辟了前所未有的可能性,而没有光诱导剂可以减少细胞毒性并省去制备步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号