首页> 外文会议>World biomaterials congress >Characterization of biomaterial-tissue interactions in their three-dimensional context - an in vivo study
【24h】

Characterization of biomaterial-tissue interactions in their three-dimensional context - an in vivo study

机译:表征生物材料-组织相互作用的三维环境-体内研究

获取原文

摘要

Synthetic biomaterials are widely used for the treatment of chronic and acute wounds. They play an increasingly role in regenerative medicine. However, the adaptations and interactions of biological tissue at implantation site with biomaterial of complex architecture are difficult to characterize in their three-dimensional (3D) context. This morphometric study uses computerized quantification of synchrotron radiation x-ray tomographic microscopic (SRXTM) data to evaluate the interplay of a filamentous synthetic copolymer, mainly based on DL-lactic acid, with host tissue in pigs. Complementary analysis and cross-validation were performed by light- and electron microscopy. SRXTM allows for nondestructive 3D analysis of biomaterial on a sub-micron level. Thereby parameters defining filamentous biomaterial, such as filament-diameter, -volume-density, -porosity, -directionality and -clustering, are now available for quantification without stereological detriments (Fig.1,2B). At the same time, SRXTM provides a sufficient spatial resolution (voxel-edge-length: 325nm) to visualize and quantify single biomaterial-induced multinucleated giant cells (BIMGC) in their spatial extend and relation to the synthetic filaments (Fig.2B,3C/D). Cell and collagen fiber directionality are assessable in 3D and can be correlated to filament alignment (Fig.2B,3B). Scanning and transmission electron microscopy demonstrate organelle containing, ultra-fine, finger-like cell protrusions into the blind ends of the biomaterial filaments (Fig. 2C/D). One SRXTM-reconstruction of the materials prior to implantation, and 30 days after implantation were analyzed. The filaments were segmented in 3D using thresholding and suitable morphological operators. In the post-implantation volume image, BIMGCs have been identified based on their 3D-texture. BIMGCs can be identified with high sensitivity. Furthermore, cell and collagen fiber directionality have been quantified using the MAVI software package (Fraunhofer ITWM, Kaiserslautem). Results show that the pre- and post-implantation filament diameters remain unchanged (21.6±5.0μm vs. 23.3±6.9μm, respectively). However,, there is a dear densification of the fiber system (increasing from 9.5vol% pre to 19.6vol% post). The measured fiber volume densities VV give clear indication for 3D-fiber clustering post-implantation in terms of an increasing standard deviation of W (3.1vol% pre vs. 4.3vol% post). Regarding 3D-morphometry, BIMGCs were largely non-convex with volumes mostly below 60kμm~3 (Fig.3C/D). With the present study we demonstrate that SRXTM allows qualitative and quantitative 3D investigation of biomaterial-host-tissue interactions with sufficient spatial resolution to detect single cells. Cross-validation with histologic tissue samples and electron micrographs correlate well with synchrotron imaging results and provide complementary insights into interactive and adaptive processes.
机译:合成生物材料被广泛用于治疗慢性和急性伤口。它们在再生医学中起着越来越重要的作用。但是,植入部位的生物组织与复杂结构的生物材料之间的适应和相互作用很难在其三维(3D)上下文中表征。这项形态计量学研究使用同步辐射X射线断层显微镜(SRXTM)数据的计算机量化来评估主要基于DL-乳酸的丝状合成共聚物与猪宿主组织之间的相互作用。通过光学和电子显微镜进行互补分析和交叉验证。 SRXTM允许对亚材料级别的生物材料进行无损3D分析。因此,用于定义丝状生物材料的参数,例如细丝直径,-体积密度,-孔隙率,-方向性和-聚类,现在可用于定量分析,而不会产生立体损害(图1,2B)。同时,SRXTM提供了足够的空间分辨率(体素边缘长度:325nm),以可视化和量化单个生物材料诱导的多核巨细胞(BIMGC)在空间上的延伸以及与合成丝的关系(图2B,3C) / D)。细胞和胶原纤维的方向性可以在3D中评估,并且可以与细丝排列相关(图2B,3B)。扫描和透射电子显微镜显示,细胞器内有超细的指状细胞突起进入生物材料细丝的盲端(图2C / D)。在植入前和植入后30天对材料进行了一次SRXTM重建。使用阈值化和合适的形态学运算符将细丝以3D方式分割。在植入后的体积图像中,已根据BIMGC的3D纹理对其进行了识别。 BIMGC的识别灵敏度很高。此外,已经使用MAVI软件包(Fraunhofer ITWM,Kaiserslautem)对细胞和胶原纤维的方向性进行了量化。结果表明,植入前和植入后的细丝直径均保持不变(分别为21.6±5.0μm和23.3±6.9μm)。但是,纤维系统的致密化程度很高(从之前的9.5vol%增加到后期的19.6vol%)。测得的纤维体积密度VV可以根据W的标准偏差的增加(植入后为3.1vol%,植入后为4.3vol%)清楚地表明植入后的3D纤维簇。就3D形态而言,BIMGC基本上是不凸的,体积大多在60kμm〜3以下(图3C / D)。通过本研究,我们证明SRXTM可以对生物材料-宿主-组织相互作用进行定性和定量3D研究,并具有足够的空间分辨率以检测单个细胞。与组织学样本和电子显微照片的交叉验证与同步加速器成像结果紧密相关,并提供了对交互式和自适应过程的补充见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号