首页> 外文会议>World biomaterials congress >Post-functionalization of supramolecular biomaterial surfaces: Introducing orthogonal click chemistry
【24h】

Post-functionalization of supramolecular biomaterial surfaces: Introducing orthogonal click chemistry

机译:超分子生物材料表面的后功能化:引入正交点击化学

获取原文

摘要

Introduction: Orthogonal ligation strategies to post-functionalize material surfaces in order to immobilize compounds have gained interest in recent years due to versatile applications in biomedical engineering and materials science. In particular, the catalyst-free inverse electron demanding Diels-Alder (iEDDA) reaction between 1,2,4,5-tetrazines as electron deficient dienes and trans-cyclooctenes (TCO) as strained electron rich dienophiles has emerged as a compelling advancement in the field. Our group designs and synthesizes supramolecular materials based on the 2-ureido-4[1H]-pyrimidinone (UPy) quadruple hydrogen bonding motif, where UPy-modified guest molecules can be easily incorporated via simply mixing the UPy-host polymer and UPy-guest molecules in solution. These are proposed to co-assemble into supramolecular nanofibers via a modular approach and can be processed into drop cast biomaterial films. Here, we propose a new strategy to covalently immobilize biomolecules at the surface of supramolecular materials via orthogonal tetrazine - TCO ligation and verify this with diverse physical chemical characterization techniques. This approach allows for the immobilization of bioactive molecules as well as complex functional proteins at the surface of our biomaterials, en route to meet nature's complexity. Materials and Methods: As supramolecular base material polycaprolactone telechelically modified with UPy moieties was used (PCLdiUPy). UPy-modified tetrazine (UPy-Tz) moieties that can be incorporated into our materials were synthesized, commenced with the synthesis of a UPy-carboxylic acid functionalized synthon, where the last step comprised of reaction of the Tz with the UPy-synthon. Both a TCO-modified model compound as well as a TCO-modified protein were synthesized and subsequently reacted at the surface-water interface, enabling surface functionalization. Surfaces were characterized using different techniques, including X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), water contact angle measurements, surface matrix assisted laser/desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), 3D time-of-flight secondary ion mass spectrometry (3D TOF-SIMS) and fluorescence spectroscopy. Results and Discussion: XPS measurements have shown that UPy-Tz is preferentially present at the surface of the supramolecular films. Moreover, upon click reaction with a TCO-model compound equipped with an iodine atom, a significant increase in iodine signal is observed in films consisting of PCLdiUPy with UPy-Tz as compared to PCLdiUPy films. Fluorescence spectroscopy showed that upon incorporating increasing amounts of UPy-Tz in the material, higher fluorescence signals originating from TCO-modified fluorescent protein were observed. Surface MALDI-TOF-MS experiments revealed presence of the UPy-Tz - TCO-modified model compound click product, a direct proof of the success of this novel strategy. 3D TOF-SIMS experiments allowed to reconstruct a density map of the different compounds incorporated in our materials and provided useful insights in their spatial distribution. Conclusion: We report on a novel, elegant and successful strategy to functionalize supramolecular material surfaces via an orthogonal click reaction between a UPy-Tz moiety, modulariy incorporated into our supramolecular polymer, and a TCO-modified model compound. The strategy presented here allows us to adapt this chemistry to obtain multifunctional materials, where we envision ultimate application as highly sophisticated biomaterials in the field of cardiovascular tissue engineering.
机译:简介:近年来,由于在生物医学工程和材料科学领域的广泛应用,用于将材料表面后功能化以固定化化合物的正交连接策略引起了人们的兴趣。特别是,作为缺电子二烯的1,2,4,5-四嗪与应变的富电子二烯亲和体的反式环辛烯(TCO)之间的无催化剂逆电子需求的Diels-Alder反应(iEDDA)成为一种引人注目的进步。场。我们的小组基于2-ureido-4 [1H]-嘧啶酮(UPy)四个氢键基序设计和合成超分子材料,其中UPy修饰的客体分子可通过简单地将UPy-宿主聚合物和UPy-guest混合而轻松掺入溶液中的分子。提出通过模块化方法将它们共组装成超分子纳米纤维,并可将其加工成滴铸生物材料薄膜。在这里,我们提出了一种通过正交四嗪-TCO连接将生物分子共价固定在超分子材料表面的新策略,并通过多种物理化学表征技术对其进行了验证。这种方法可以将生物活性分子以及复杂的功能蛋白固定在我们的生物材料表面,从而满足大自然的复杂性。材料和方法:作为超分子基础材料,使用经UPy部分进行远螯修饰的聚己内酯(PCLdiUPy)。合成可以掺入我们材料中的UPy修饰的四嗪(UPy-Tz)部分,从UPy-羧酸官能化的合成子的合成开始,其中最后一步包括Tz与UPy-合成子的反应。合成了TCO修饰的模型化合物和TCO修饰的蛋白质,随后在地表水界面进行反应,从而实现了表面功能化。使用不同的技术对表面进行了表征,包括X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),原子力显微镜(AFM),水接触角测量,表面基质辅助激光/解吸电离飞行时间质量质谱(MALDI-TOF MS),3D飞行时间二次离子质谱(3D TOF-SIMS)和荧光光谱。结果与讨论:XPS测量表明,UPy-Tz优先存在于超分子膜的表面。此外,与装有碘原子的TCO型化合物发生点击反应后,与PCLdiUPy膜相比,在包含PCydiUPy和UPy-Tz的膜中碘信号显着增加。荧光光谱显示,在材料中掺入增加量的UPy-Tz时,观察到源自TCO修饰的荧光蛋白的较高荧光信号。表面MALDI-TOF-MS实验揭示了UPy-Tz-TCO修饰的模型化合物Click产品的存在,这直接证明了这一新颖策略的成功。 3D TOF-SIMS实验允许重建掺入我们材料中的不同化合物的密度图,并提供有关其空间分布的有用见解。结论:我们报告了一种新颖,优雅且成功的策略,可通过UPy-Tz部分,模块化掺入我们的超分子聚合物中的UPy-Tz部分与TCO修饰的模型化合物之间的正交点击反应来功能化超分子材料表面。本文介绍的策略使我们能够适应这种化学反应,从而获得多功能材料,并在其中设想了最终应用作为心血管组织工程领域中高度复杂的生物材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号